Proof of Theorem spimehOLD
| Step | Hyp | Ref
| Expression |
| 1 | | ax9v 1655 |
. . . 4
⊢ ¬ ∀x ¬
x = z |
| 2 | | id 19 |
. . . . . . 7
⊢ (φ → φ) |
| 3 | 2 | hbth 1552 |
. . . . . . . 8
⊢ ((φ → φ) → ∀x(φ → φ)) |
| 4 | | hba1 1786 |
. . . . . . . . 9
⊢ (∀x ¬
ψ → ∀x∀x ¬
ψ) |
| 5 | 4 | a1i 10 |
. . . . . . . 8
⊢ ((φ → φ) → (∀x ¬
ψ → ∀x∀x ¬
ψ)) |
| 6 | | spimehOLD.1 |
. . . . . . . . . 10
⊢ (φ → ∀xφ) |
| 7 | 6 | hbn 1776 |
. . . . . . . . 9
⊢ (¬ φ → ∀x ¬
φ) |
| 8 | 7 | a1i 10 |
. . . . . . . 8
⊢ ((φ → φ) → (¬ φ → ∀x ¬
φ)) |
| 9 | 3, 5, 8 | hbimd 1815 |
. . . . . . 7
⊢ ((φ → φ) → ((∀x ¬
ψ → ¬ φ) → ∀x(∀x ¬
ψ → ¬ φ))) |
| 10 | 2, 9 | ax-mp 5 |
. . . . . 6
⊢ ((∀x ¬
ψ → ¬ φ) → ∀x(∀x ¬
ψ → ¬ φ)) |
| 11 | 10 | hbn 1776 |
. . . . 5
⊢ (¬ (∀x ¬
ψ → ¬ φ) → ∀x ¬
(∀x
¬ ψ → ¬ φ)) |
| 12 | | spimehOLD.2 |
. . . . . . 7
⊢ (x = z →
(φ → ψ)) |
| 13 | | sp 1747 |
. . . . . . 7
⊢ (∀x ¬
ψ → ¬ ψ) |
| 14 | 12, 13 | nsyli 133 |
. . . . . 6
⊢ (x = z →
(∀x
¬ ψ → ¬ φ)) |
| 15 | 14 | con3i 127 |
. . . . 5
⊢ (¬ (∀x ¬
ψ → ¬ φ) → ¬ x = z) |
| 16 | 11, 15 | alrimih 1565 |
. . . 4
⊢ (¬ (∀x ¬
ψ → ¬ φ) → ∀x ¬
x = z) |
| 17 | 1, 16 | mt3 171 |
. . 3
⊢ (∀x ¬
ψ → ¬ φ) |
| 18 | 17 | con2i 112 |
. 2
⊢ (φ → ¬ ∀x ¬
ψ) |
| 19 | | df-ex 1542 |
. 2
⊢ (∃xψ ↔ ¬ ∀x ¬
ψ) |
| 20 | 18, 19 | sylibr 203 |
1
⊢ (φ → ∃xψ) |