| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nsyl4 | GIF version | ||
| Description: A negated syllogism inference. (Contributed by NM, 15-Feb-1996.) |
| Ref | Expression |
|---|---|
| nsyl4.1 | ⊢ (φ → ψ) |
| nsyl4.2 | ⊢ (¬ φ → χ) |
| Ref | Expression |
|---|---|
| nsyl4 | ⊢ (¬ χ → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsyl4.2 | . . 3 ⊢ (¬ φ → χ) | |
| 2 | 1 | con1i 121 | . 2 ⊢ (¬ χ → φ) |
| 3 | nsyl4.1 | . 2 ⊢ (φ → ψ) | |
| 4 | 2, 3 | syl 15 | 1 ⊢ (¬ χ → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm5.55 867 ax6o 1750 hbimdOLD 1816 naecoms 1948 ax6 2147 ax467 2169 ax467to7 2172 naecoms-o 2178 nfunsn 5354 |
| Copyright terms: Public domain | W3C validator |