NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nsyl4 GIF version

Theorem nsyl4 134
Description: A negated syllogism inference. (Contributed by NM, 15-Feb-1996.)
Hypotheses
Ref Expression
nsyl4.1 (φψ)
nsyl4.2 φχ)
Assertion
Ref Expression
nsyl4 χψ)

Proof of Theorem nsyl4
StepHypRef Expression
1 nsyl4.2 . . 3 φχ)
21con1i 121 . 2 χφ)
3 nsyl4.1 . 2 (φψ)
42, 3syl 15 1 χψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm5.55  867  ax6o  1750  hbimdOLD  1816  naecoms  1948  ax6  2147  ax467  2169  ax467to7  2172  naecoms-o  2178  nfunsn  5354
  Copyright terms: Public domain W3C validator