New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nsyl4 | GIF version |
Description: A negated syllogism inference. (Contributed by NM, 15-Feb-1996.) |
Ref | Expression |
---|---|
nsyl4.1 | ⊢ (φ → ψ) |
nsyl4.2 | ⊢ (¬ φ → χ) |
Ref | Expression |
---|---|
nsyl4 | ⊢ (¬ χ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsyl4.2 | . . 3 ⊢ (¬ φ → χ) | |
2 | 1 | con1i 121 | . 2 ⊢ (¬ χ → φ) |
3 | nsyl4.1 | . 2 ⊢ (φ → ψ) | |
4 | 2, 3 | syl 15 | 1 ⊢ (¬ χ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm5.55 867 ax6o 1750 hbimdOLD 1816 naecoms 1948 ax6 2147 ax467 2169 ax467to7 2172 naecoms-o 2178 nfunsn 5354 |
Copyright terms: Public domain | W3C validator |