| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > or42 | GIF version | ||
| Description: Rearrangement of 4 disjuncts. (Contributed by NM, 10-Jan-2005.) |
| Ref | Expression |
|---|---|
| or42 | ⊢ (((φ ∨ ψ) ∨ (χ ∨ θ)) ↔ ((φ ∨ χ) ∨ (θ ∨ ψ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | or4 514 | . 2 ⊢ (((φ ∨ ψ) ∨ (χ ∨ θ)) ↔ ((φ ∨ χ) ∨ (ψ ∨ θ))) | |
| 2 | orcom 376 | . . 3 ⊢ ((ψ ∨ θ) ↔ (θ ∨ ψ)) | |
| 3 | 2 | orbi2i 505 | . 2 ⊢ (((φ ∨ χ) ∨ (ψ ∨ θ)) ↔ ((φ ∨ χ) ∨ (θ ∨ ψ))) |
| 4 | 1, 3 | bitri 240 | 1 ⊢ (((φ ∨ ψ) ∨ (χ ∨ θ)) ↔ ((φ ∨ χ) ∨ (θ ∨ ψ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |