New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > or4 | GIF version |
Description: Rearrangement of 4 disjuncts. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
or4 | ⊢ (((φ ∨ ψ) ∨ (χ ∨ θ)) ↔ ((φ ∨ χ) ∨ (ψ ∨ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | or12 509 | . . 3 ⊢ ((ψ ∨ (χ ∨ θ)) ↔ (χ ∨ (ψ ∨ θ))) | |
2 | 1 | orbi2i 505 | . 2 ⊢ ((φ ∨ (ψ ∨ (χ ∨ θ))) ↔ (φ ∨ (χ ∨ (ψ ∨ θ)))) |
3 | orass 510 | . 2 ⊢ (((φ ∨ ψ) ∨ (χ ∨ θ)) ↔ (φ ∨ (ψ ∨ (χ ∨ θ)))) | |
4 | orass 510 | . 2 ⊢ (((φ ∨ χ) ∨ (ψ ∨ θ)) ↔ (φ ∨ (χ ∨ (ψ ∨ θ)))) | |
5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ (((φ ∨ ψ) ∨ (χ ∨ θ)) ↔ ((φ ∨ χ) ∨ (ψ ∨ θ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: or42 515 orordi 516 orordir 517 3or6 1263 |
Copyright terms: Public domain | W3C validator |