| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm5.32ri | GIF version | ||
| Description: Distribution of implication over biconditional (inference rule). (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| pm5.32i.1 | ⊢ (φ → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| pm5.32ri | ⊢ ((ψ ∧ φ) ↔ (χ ∧ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32i.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
| 2 | 1 | pm5.32i 618 | . 2 ⊢ ((φ ∧ ψ) ↔ (φ ∧ χ)) |
| 3 | ancom 437 | . 2 ⊢ ((ψ ∧ φ) ↔ (φ ∧ ψ)) | |
| 4 | ancom 437 | . 2 ⊢ ((χ ∧ φ) ↔ (φ ∧ χ)) | |
| 5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ ((ψ ∧ φ) ↔ (χ ∧ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: anbi1i 676 pm5.61 693 oranabs 829 pm5.36 849 2eu5 2288 ceqsralt 2883 ceqsrexbv 2974 reuind 3040 rabsn 3791 elpw1 4145 pw1in 4165 addccan2nclem1 6264 scancan 6332 |
| Copyright terms: Public domain | W3C validator |