NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.32ri GIF version

Theorem pm5.32ri 619
Description: Distribution of implication over biconditional (inference rule). (Contributed by NM, 12-Mar-1995.)
Hypothesis
Ref Expression
pm5.32i.1 (φ → (ψχ))
Assertion
Ref Expression
pm5.32ri ((ψ φ) ↔ (χ φ))

Proof of Theorem pm5.32ri
StepHypRef Expression
1 pm5.32i.1 . . 3 (φ → (ψχ))
21pm5.32i 618 . 2 ((φ ψ) ↔ (φ χ))
3 ancom 437 . 2 ((ψ φ) ↔ (φ ψ))
4 ancom 437 . 2 ((χ φ) ↔ (φ χ))
52, 3, 43bitr4i 268 1 ((ψ φ) ↔ (χ φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  anbi1i  676  pm5.61  693  oranabs  829  pm5.36  849  2eu5  2288  ceqsralt  2883  ceqsrexbv  2974  reuind  3040  rabsn  3791  elpw1  4145  pw1in  4165  addccan2nclem1  6264  scancan  6332
  Copyright terms: Public domain W3C validator