| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm1.5 | GIF version | ||
| Description: Axiom *1.5 (Assoc) of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm1.5 | ⊢ ((φ ∨ (ψ ∨ χ)) → (ψ ∨ (φ ∨ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 374 | . . 3 ⊢ (φ → (φ ∨ χ)) | |
| 2 | 1 | olcd 382 | . 2 ⊢ (φ → (ψ ∨ (φ ∨ χ))) |
| 3 | olc 373 | . . 3 ⊢ (χ → (φ ∨ χ)) | |
| 4 | 3 | orim2i 504 | . 2 ⊢ ((ψ ∨ χ) → (ψ ∨ (φ ∨ χ))) |
| 5 | 2, 4 | jaoi 368 | 1 ⊢ ((φ ∨ (ψ ∨ χ)) → (ψ ∨ (φ ∨ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 |
| This theorem is referenced by: or12 509 |
| Copyright terms: Public domain | W3C validator |