Step | Hyp | Ref
| Expression |
1 | | ax10lem1 1936 |
. . . . . 6
⊢ (∀x x = w →
∀y
y = w) |
2 | | equequ1 1684 |
. . . . . . . 8
⊢ (z = x →
(z = w
↔ x = w)) |
3 | 2 | dvelimv 1939 |
. . . . . . 7
⊢ (¬ ∀y y = x →
(x = w
→ ∀y x = w)) |
4 | | hba1 1786 |
. . . . . . . . 9
⊢ (∀y x = w →
∀y∀y x = w) |
5 | | equequ2 1686 |
. . . . . . . . . 10
⊢ (x = w →
(y = x
↔ y = w)) |
6 | 5 | sps 1754 |
. . . . . . . . 9
⊢ (∀y x = w →
(y = x
↔ y = w)) |
7 | 4, 6 | albidh 1590 |
. . . . . . . 8
⊢ (∀y x = w →
(∀y
y = x
↔ ∀y y = w)) |
8 | 7 | biimprd 214 |
. . . . . . 7
⊢ (∀y x = w →
(∀y
y = w
→ ∀y y = x)) |
9 | 3, 8 | syl6 29 |
. . . . . 6
⊢ (¬ ∀y y = x →
(x = w
→ (∀y y = w → ∀y y = x))) |
10 | 1, 9 | syl7 63 |
. . . . 5
⊢ (¬ ∀y y = x →
(x = w
→ (∀x x = w → ∀y y = x))) |
11 | 10 | spsd 1755 |
. . . 4
⊢ (¬ ∀y y = x →
(∀x
x = w
→ (∀x x = w → ∀y y = x))) |
12 | 11 | pm2.43d 44 |
. . 3
⊢ (¬ ∀y y = x →
(∀x
x = w
→ ∀y y = x)) |
13 | 12 | com12 27 |
. 2
⊢ (∀x x = w →
(¬ ∀y y = x → ∀y y = x)) |
14 | 13 | pm2.18d 103 |
1
⊢ (∀x x = w →
∀y
y = x) |