New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm2.61dane | GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 30-Nov-2011.) |
Ref | Expression |
---|---|
pm2.61dane.1 | ⊢ ((φ ∧ A = B) → ψ) |
pm2.61dane.2 | ⊢ ((φ ∧ A ≠ B) → ψ) |
Ref | Expression |
---|---|
pm2.61dane | ⊢ (φ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61dane.1 | . . 3 ⊢ ((φ ∧ A = B) → ψ) | |
2 | 1 | ex 423 | . 2 ⊢ (φ → (A = B → ψ)) |
3 | pm2.61dane.2 | . . 3 ⊢ ((φ ∧ A ≠ B) → ψ) | |
4 | 3 | ex 423 | . 2 ⊢ (φ → (A ≠ B → ψ)) |
5 | 2, 4 | pm2.61dne 2594 | 1 ⊢ (φ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ≠ wne 2517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ne 2519 |
This theorem is referenced by: pm2.61da2ne 2596 pm2.61da3ne 2597 |
Copyright terms: Public domain | W3C validator |