NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.61dane GIF version

Theorem pm2.61dane 2595
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
pm2.61dane.1 ((φ A = B) → ψ)
pm2.61dane.2 ((φ AB) → ψ)
Assertion
Ref Expression
pm2.61dane (φψ)

Proof of Theorem pm2.61dane
StepHypRef Expression
1 pm2.61dane.1 . . 3 ((φ A = B) → ψ)
21ex 423 . 2 (φ → (A = Bψ))
3 pm2.61dane.2 . . 3 ((φ AB) → ψ)
43ex 423 . 2 (φ → (ABψ))
52, 4pm2.61dne 2594 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-ne 2519
This theorem is referenced by:  pm2.61da2ne  2596  pm2.61da3ne  2597
  Copyright terms: Public domain W3C validator