NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.61dne GIF version

Theorem pm2.61dne 2594
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
pm2.61dne.1 (φ → (A = Bψ))
pm2.61dne.2 (φ → (ABψ))
Assertion
Ref Expression
pm2.61dne (φψ)

Proof of Theorem pm2.61dne
StepHypRef Expression
1 pm2.61dne.2 . 2 (φ → (ABψ))
2 nne 2521 . . 3 ABA = B)
3 pm2.61dne.1 . . 3 (φ → (A = Bψ))
42, 3syl5bi 208 . 2 (φ → (¬ ABψ))
51, 4pm2.61d 150 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  pm2.61dane  2595
  Copyright terms: Public domain W3C validator