| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm2.61da3ne | GIF version | ||
| Description: Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013.) |
| Ref | Expression |
|---|---|
| pm2.61da3ne.1 | ⊢ ((φ ∧ A = B) → ψ) |
| pm2.61da3ne.2 | ⊢ ((φ ∧ C = D) → ψ) |
| pm2.61da3ne.3 | ⊢ ((φ ∧ E = F) → ψ) |
| pm2.61da3ne.4 | ⊢ ((φ ∧ (A ≠ B ∧ C ≠ D ∧ E ≠ F)) → ψ) |
| Ref | Expression |
|---|---|
| pm2.61da3ne | ⊢ (φ → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61da3ne.1 | . 2 ⊢ ((φ ∧ A = B) → ψ) | |
| 2 | pm2.61da3ne.2 | . 2 ⊢ ((φ ∧ C = D) → ψ) | |
| 3 | pm2.61da3ne.3 | . . . 4 ⊢ ((φ ∧ E = F) → ψ) | |
| 4 | 3 | adantlr 695 | . . 3 ⊢ (((φ ∧ (A ≠ B ∧ C ≠ D)) ∧ E = F) → ψ) |
| 5 | simpll 730 | . . . 4 ⊢ (((φ ∧ (A ≠ B ∧ C ≠ D)) ∧ E ≠ F) → φ) | |
| 6 | simplrl 736 | . . . 4 ⊢ (((φ ∧ (A ≠ B ∧ C ≠ D)) ∧ E ≠ F) → A ≠ B) | |
| 7 | simplrr 737 | . . . 4 ⊢ (((φ ∧ (A ≠ B ∧ C ≠ D)) ∧ E ≠ F) → C ≠ D) | |
| 8 | simpr 447 | . . . 4 ⊢ (((φ ∧ (A ≠ B ∧ C ≠ D)) ∧ E ≠ F) → E ≠ F) | |
| 9 | pm2.61da3ne.4 | . . . 4 ⊢ ((φ ∧ (A ≠ B ∧ C ≠ D ∧ E ≠ F)) → ψ) | |
| 10 | 5, 6, 7, 8, 9 | syl13anc 1184 | . . 3 ⊢ (((φ ∧ (A ≠ B ∧ C ≠ D)) ∧ E ≠ F) → ψ) |
| 11 | 4, 10 | pm2.61dane 2595 | . 2 ⊢ ((φ ∧ (A ≠ B ∧ C ≠ D)) → ψ) |
| 12 | 1, 2, 11 | pm2.61da2ne 2596 | 1 ⊢ (φ → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 = wceq 1642 ≠ wne 2517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-ne 2519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |