| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm2.61ddan | GIF version | ||
| Description: Elimination of two antecedents. (Contributed by NM, 9-Jul-2013.) |
| Ref | Expression |
|---|---|
| pm2.61ddan.1 | ⊢ ((φ ∧ ψ) → θ) |
| pm2.61ddan.2 | ⊢ ((φ ∧ χ) → θ) |
| pm2.61ddan.3 | ⊢ ((φ ∧ (¬ ψ ∧ ¬ χ)) → θ) |
| Ref | Expression |
|---|---|
| pm2.61ddan | ⊢ (φ → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61ddan.1 | . 2 ⊢ ((φ ∧ ψ) → θ) | |
| 2 | pm2.61ddan.2 | . . . 4 ⊢ ((φ ∧ χ) → θ) | |
| 3 | 2 | adantlr 695 | . . 3 ⊢ (((φ ∧ ¬ ψ) ∧ χ) → θ) |
| 4 | pm2.61ddan.3 | . . . 4 ⊢ ((φ ∧ (¬ ψ ∧ ¬ χ)) → θ) | |
| 5 | 4 | anassrs 629 | . . 3 ⊢ (((φ ∧ ¬ ψ) ∧ ¬ χ) → θ) |
| 6 | 3, 5 | pm2.61dan 766 | . 2 ⊢ ((φ ∧ ¬ ψ) → θ) |
| 7 | 1, 6 | pm2.61dan 766 | 1 ⊢ (φ → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |