NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.61ddan GIF version

Theorem pm2.61ddan 767
Description: Elimination of two antecedents. (Contributed by NM, 9-Jul-2013.)
Hypotheses
Ref Expression
pm2.61ddan.1 ((φ ψ) → θ)
pm2.61ddan.2 ((φ χ) → θ)
pm2.61ddan.3 ((φ ψ ¬ χ)) → θ)
Assertion
Ref Expression
pm2.61ddan (φθ)

Proof of Theorem pm2.61ddan
StepHypRef Expression
1 pm2.61ddan.1 . 2 ((φ ψ) → θ)
2 pm2.61ddan.2 . . . 4 ((φ χ) → θ)
32adantlr 695 . . 3 (((φ ¬ ψ) χ) → θ)
4 pm2.61ddan.3 . . . 4 ((φ ψ ¬ χ)) → θ)
54anassrs 629 . . 3 (((φ ¬ ψ) ¬ χ) → θ)
63, 5pm2.61dan 766 . 2 ((φ ¬ ψ) → θ)
71, 6pm2.61dan 766 1 (φθ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator