New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anassrs | GIF version |
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
anassrs.1 | ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
Ref | Expression |
---|---|
anassrs | ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anassrs.1 | . . 3 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) | |
2 | 1 | exp32 588 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
3 | 2 | imp31 421 | 1 ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anass 630 mpanr1 664 pm2.61ddan 767 pm2.61dda 768 anass1rs 782 anabss5 789 anabss7 794 pm2.61da2ne 2596 2ralbida 2654 2rexbidva 2656 dfimafn 5367 funimass4 5369 eqfnfv2 5394 f1elima 5475 isores2 5494 isomin 5497 f1oiso 5500 weds 5939 |
Copyright terms: Public domain | W3C validator |