New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm2.61dan | GIF version |
Description: Elimination of an antecedent. (Contributed by NM, 1-Jan-2005.) |
Ref | Expression |
---|---|
pm2.61dan.1 | ⊢ ((φ ∧ ψ) → χ) |
pm2.61dan.2 | ⊢ ((φ ∧ ¬ ψ) → χ) |
Ref | Expression |
---|---|
pm2.61dan | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61dan.1 | . . 3 ⊢ ((φ ∧ ψ) → χ) | |
2 | 1 | ex 423 | . 2 ⊢ (φ → (ψ → χ)) |
3 | pm2.61dan.2 | . . 3 ⊢ ((φ ∧ ¬ ψ) → χ) | |
4 | 3 | ex 423 | . 2 ⊢ (φ → (¬ ψ → χ)) |
5 | 2, 4 | pm2.61d 150 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: pm2.61ddan 767 pm2.61dda 768 ifeq1da 3688 ifeq2da 3689 ifclda 3690 ifbothda 3693 xpcan 5058 fvmpti 5700 fvmptss 5706 |
Copyright terms: Public domain | W3C validator |