NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.61ine GIF version

Theorem pm2.61ine 2593
Description: Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
pm2.61ine.1 (A = Bφ)
pm2.61ine.2 (ABφ)
Assertion
Ref Expression
pm2.61ine φ

Proof of Theorem pm2.61ine
StepHypRef Expression
1 pm2.61ine.2 . 2 (ABφ)
2 nne 2521 . . 3 ABA = B)
3 pm2.61ine.1 . . 3 (A = Bφ)
42, 3sylbi 187 . 2 ABφ)
51, 4pm2.61i 156 1 φ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1642  wne 2517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-ne 2519
This theorem is referenced by:  rgenz  3656  raaan  3658  raaanv  3659  iinrab2  4030  riinrab  4042  nnsucelr  4429  lenltfin  4470  tfincl  4493  tfin11  4494  tfinltfinlem1  4501  tfinltfin  4502  vfinncvntnn  4549  dmxpid  4925  dmxpss  5053  rnxpid  5055  xpexr  5110  fconstfv  5457  mapsspm  6022  mapsspw  6023  enadj  6061  nc0le1  6217
  Copyright terms: Public domain W3C validator