New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm2.61ine | GIF version |
Description: Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61ine.1 | ⊢ (A = B → φ) |
pm2.61ine.2 | ⊢ (A ≠ B → φ) |
Ref | Expression |
---|---|
pm2.61ine | ⊢ φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ine.2 | . 2 ⊢ (A ≠ B → φ) | |
2 | nne 2521 | . . 3 ⊢ (¬ A ≠ B ↔ A = B) | |
3 | pm2.61ine.1 | . . 3 ⊢ (A = B → φ) | |
4 | 2, 3 | sylbi 187 | . 2 ⊢ (¬ A ≠ B → φ) |
5 | 1, 4 | pm2.61i 156 | 1 ⊢ φ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1642 ≠ wne 2517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-ne 2519 |
This theorem is referenced by: rgenz 3656 raaan 3658 raaanv 3659 iinrab2 4030 riinrab 4042 nnsucelr 4429 lenltfin 4470 tfincl 4493 tfin11 4494 tfinltfinlem1 4501 tfinltfin 4502 vfinncvntnn 4549 dmxpid 4925 dmxpss 5053 rnxpid 5055 xpexr 5110 fconstfv 5457 mapsspm 6022 mapsspw 6023 enadj 6061 nc0le1 6217 |
Copyright terms: Public domain | W3C validator |