New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nne | GIF version |
Description: Negation of inequality. (Contributed by NM, 9-Jun-2006.) |
Ref | Expression |
---|---|
nne | ⊢ (¬ A ≠ B ↔ A = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2519 | . . 3 ⊢ (A ≠ B ↔ ¬ A = B) | |
2 | 1 | con2bii 322 | . 2 ⊢ (A = B ↔ ¬ A ≠ B) |
3 | 2 | bicomi 193 | 1 ⊢ (¬ A ≠ B ↔ A = B) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 = wceq 1642 ≠ wne 2517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-ne 2519 |
This theorem is referenced by: neirr 2522 necon3ad 2553 necon3bd 2554 necon3ai 2557 necon3bi 2558 necon1bi 2560 necon2ai 2562 necon2ad 2565 necon4ai 2576 necon4i 2577 necon4ad 2578 necon4bd 2579 necon4d 2580 necon4bid 2583 necon1bd 2585 necon1d 2586 pm2.61ne 2592 pm2.61ine 2593 pm2.61dne 2594 ne3anior 2603 sbcne12g 3155 xpeq0 5047 xpcan 5058 xpcan2 5059 |
Copyright terms: Public domain | W3C validator |