NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3ecase GIF version

Theorem 3ecase 1286
Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005.)
Hypotheses
Ref Expression
3ecase.1 φθ)
3ecase.2 ψθ)
3ecase.3 χθ)
3ecase.4 ((φ ψ χ) → θ)
Assertion
Ref Expression
3ecase θ

Proof of Theorem 3ecase
StepHypRef Expression
1 3ecase.4 . . . 4 ((φ ψ χ) → θ)
213exp 1150 . . 3 (φ → (ψ → (χθ)))
3 3ecase.1 . . . . 5 φθ)
43a1d 22 . . . 4 φ → (χθ))
54a1d 22 . . 3 φ → (ψ → (χθ)))
62, 5pm2.61i 156 . 2 (ψ → (χθ))
7 3ecase.2 . 2 ψθ)
8 3ecase.3 . 2 χθ)
96, 7, 8pm2.61nii 158 1 θ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator