New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3ecase | GIF version |
Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
3ecase.1 | ⊢ (¬ φ → θ) |
3ecase.2 | ⊢ (¬ ψ → θ) |
3ecase.3 | ⊢ (¬ χ → θ) |
3ecase.4 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
3ecase | ⊢ θ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ecase.4 | . . . 4 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
2 | 1 | 3exp 1150 | . . 3 ⊢ (φ → (ψ → (χ → θ))) |
3 | 3ecase.1 | . . . . 5 ⊢ (¬ φ → θ) | |
4 | 3 | a1d 22 | . . . 4 ⊢ (¬ φ → (χ → θ)) |
5 | 4 | a1d 22 | . . 3 ⊢ (¬ φ → (ψ → (χ → θ))) |
6 | 2, 5 | pm2.61i 156 | . 2 ⊢ (ψ → (χ → θ)) |
7 | 3ecase.2 | . 2 ⊢ (¬ ψ → θ) | |
8 | 3ecase.3 | . 2 ⊢ (¬ χ → θ) | |
9 | 6, 7, 8 | pm2.61nii 158 | 1 ⊢ θ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |