New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm2.621 | GIF version |
Description: Theorem *2.621 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.621 | ⊢ ((φ → ψ) → ((φ ∨ ψ) → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ ((φ → ψ) → (φ → ψ)) | |
2 | idd 21 | . 2 ⊢ ((φ → ψ) → (ψ → ψ)) | |
3 | 1, 2 | jaod 369 | 1 ⊢ ((φ → ψ) → ((φ ∨ ψ) → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: pm2.62 398 pm2.73 818 pm4.72 846 undif4 3608 |
Copyright terms: Public domain | W3C validator |