Step | Hyp | Ref
| Expression |
1 | | pm2.621 397 |
. . . . . . 7
⊢ ((x ∈ A → ¬ x
∈ C)
→ ((x ∈ A ∨ ¬ x ∈ C) →
¬ x ∈
C)) |
2 | | olc 373 |
. . . . . . 7
⊢ (¬ x ∈ C → (x
∈ A ∨ ¬ x ∈ C)) |
3 | 1, 2 | impbid1 194 |
. . . . . 6
⊢ ((x ∈ A → ¬ x
∈ C)
→ ((x ∈ A ∨ ¬ x ∈ C) ↔
¬ x ∈
C)) |
4 | 3 | anbi2d 684 |
. . . . 5
⊢ ((x ∈ A → ¬ x
∈ C)
→ (((x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ ¬ x ∈ C)) ↔
((x ∈
A ∨
x ∈
B) ∧ ¬
x ∈
C))) |
5 | | eldif 3222 |
. . . . . . 7
⊢ (x ∈ (B ∖ C) ↔ (x
∈ B ∧ ¬ x ∈ C)) |
6 | 5 | orbi2i 505 |
. . . . . 6
⊢ ((x ∈ A ∨ x ∈ (B ∖ C)) ↔ (x
∈ A ∨ (x ∈ B ∧ ¬ x ∈ C))) |
7 | | ordi 834 |
. . . . . 6
⊢ ((x ∈ A ∨ (x ∈ B ∧ ¬ x ∈ C)) ↔ ((x
∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ ¬ x ∈ C))) |
8 | 6, 7 | bitri 240 |
. . . . 5
⊢ ((x ∈ A ∨ x ∈ (B ∖ C)) ↔ ((x
∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ ¬ x ∈ C))) |
9 | | elun 3221 |
. . . . . 6
⊢ (x ∈ (A ∪ B)
↔ (x ∈ A ∨ x ∈ B)) |
10 | 9 | anbi1i 676 |
. . . . 5
⊢ ((x ∈ (A ∪ B) ∧ ¬ x ∈ C) ↔
((x ∈
A ∨
x ∈
B) ∧ ¬
x ∈
C)) |
11 | 4, 8, 10 | 3bitr4g 279 |
. . . 4
⊢ ((x ∈ A → ¬ x
∈ C)
→ ((x ∈ A ∨ x ∈ (B ∖ C)) ↔
(x ∈
(A ∪ B) ∧ ¬ x ∈ C))) |
12 | | elun 3221 |
. . . 4
⊢ (x ∈ (A ∪ (B ∖ C)) ↔
(x ∈
A ∨
x ∈
(B ∖
C))) |
13 | | eldif 3222 |
. . . 4
⊢ (x ∈ ((A ∪ B) ∖ C) ↔
(x ∈
(A ∪ B) ∧ ¬ x ∈ C)) |
14 | 11, 12, 13 | 3bitr4g 279 |
. . 3
⊢ ((x ∈ A → ¬ x
∈ C)
→ (x ∈ (A ∪
(B ∖
C)) ↔ x ∈ ((A ∪ B) ∖ C))) |
15 | 14 | alimi 1559 |
. 2
⊢ (∀x(x ∈ A → ¬ x
∈ C)
→ ∀x(x ∈ (A ∪
(B ∖
C)) ↔ x ∈ ((A ∪ B) ∖ C))) |
16 | | disj1 3594 |
. 2
⊢ ((A ∩ C) =
∅ ↔ ∀x(x ∈ A → ¬ x
∈ C)) |
17 | | dfcleq 2347 |
. 2
⊢ ((A ∪ (B ∖ C)) =
((A ∪ B) ∖ C) ↔ ∀x(x ∈ (A ∪ (B ∖ C)) ↔
x ∈
((A ∪ B) ∖ C))) |
18 | 15, 16, 17 | 3imtr4i 257 |
1
⊢ ((A ∩ C) =
∅ → (A ∪ (B ∖ C)) =
((A ∪ B) ∖ C)) |