New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.44 | GIF version |
Description: Theorem *4.44 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.44 | ⊢ (φ ↔ (φ ∨ (φ ∧ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 374 | . 2 ⊢ (φ → (φ ∨ (φ ∧ ψ))) | |
2 | id 19 | . . 3 ⊢ (φ → φ) | |
3 | simpl 443 | . . 3 ⊢ ((φ ∧ ψ) → φ) | |
4 | 2, 3 | jaoi 368 | . 2 ⊢ ((φ ∨ (φ ∧ ψ)) → φ) |
5 | 1, 4 | impbii 180 | 1 ⊢ (φ ↔ (φ ∨ (φ ∧ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |