NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  con2d GIF version

Theorem con2d 107
Description: A contraposition deduction. (Contributed by NM, 19-Aug-1993.)
Hypothesis
Ref Expression
con2d.1 (φ → (ψ → ¬ χ))
Assertion
Ref Expression
con2d (φ → (χ → ¬ ψ))

Proof of Theorem con2d
StepHypRef Expression
1 notnot2 104 . . 3 (¬ ¬ ψψ)
2 con2d.1 . . 3 (φ → (ψ → ¬ χ))
31, 2syl5 28 . 2 (φ → (¬ ¬ ψ → ¬ χ))
43con4d 97 1 (φ → (χ → ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  con2  108  mt2d  109  pm3.2im  137  exists2  2294  necon3ad  2553  necon2bd  2566  necon4ad  2578  spcimegf  2934  spcegf  2936  spcimedv  2939  rspcimedv  2958  minel  3607  tfinltfin  4502  tfinnn  4535  imadif  5172  nchoicelem14  6303
  Copyright terms: Public domain W3C validator