New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.79 | GIF version |
Description: Theorem *4.79 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 27-Jun-2013.) |
Ref | Expression |
---|---|
pm4.79 | ⊢ (((ψ → φ) ∨ (χ → φ)) ↔ ((ψ ∧ χ) → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((ψ → φ) → (ψ → φ)) | |
2 | id 19 | . . 3 ⊢ ((χ → φ) → (χ → φ)) | |
3 | 1, 2 | jaoa 496 | . 2 ⊢ (((ψ → φ) ∨ (χ → φ)) → ((ψ ∧ χ) → φ)) |
4 | simplim 143 | . . . 4 ⊢ (¬ (ψ → φ) → ψ) | |
5 | pm3.3 431 | . . . 4 ⊢ (((ψ ∧ χ) → φ) → (ψ → (χ → φ))) | |
6 | 4, 5 | syl5 28 | . . 3 ⊢ (((ψ ∧ χ) → φ) → (¬ (ψ → φ) → (χ → φ))) |
7 | 6 | orrd 367 | . 2 ⊢ (((ψ ∧ χ) → φ) → ((ψ → φ) ∨ (χ → φ))) |
8 | 3, 7 | impbii 180 | 1 ⊢ (((ψ → φ) ∨ (χ → φ)) ↔ ((ψ ∧ χ) → φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |