| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm4.79 | GIF version | ||
| Description: Theorem *4.79 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 27-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| pm4.79 | ⊢ (((ψ → φ) ∨ (χ → φ)) ↔ ((ψ ∧ χ) → φ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((ψ → φ) → (ψ → φ)) | |
| 2 | id 19 | . . 3 ⊢ ((χ → φ) → (χ → φ)) | |
| 3 | 1, 2 | jaoa 496 | . 2 ⊢ (((ψ → φ) ∨ (χ → φ)) → ((ψ ∧ χ) → φ)) | 
| 4 | simplim 143 | . . . 4 ⊢ (¬ (ψ → φ) → ψ) | |
| 5 | pm3.3 431 | . . . 4 ⊢ (((ψ ∧ χ) → φ) → (ψ → (χ → φ))) | |
| 6 | 4, 5 | syl5 28 | . . 3 ⊢ (((ψ ∧ χ) → φ) → (¬ (ψ → φ) → (χ → φ))) | 
| 7 | 6 | orrd 367 | . 2 ⊢ (((ψ ∧ χ) → φ) → ((ψ → φ) ∨ (χ → φ))) | 
| 8 | 3, 7 | impbii 180 | 1 ⊢ (((ψ → φ) ∨ (χ → φ)) ↔ ((ψ ∧ χ) → φ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |