New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.55 | GIF version |
Description: Theorem *4.55 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.55 | ⊢ (¬ (¬ φ ∧ ψ) ↔ (φ ∨ ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.54 479 | . . 3 ⊢ ((¬ φ ∧ ψ) ↔ ¬ (φ ∨ ¬ ψ)) | |
2 | 1 | con2bii 322 | . 2 ⊢ ((φ ∨ ¬ ψ) ↔ ¬ (¬ φ ∧ ψ)) |
3 | 2 | bicomi 193 | 1 ⊢ (¬ (¬ φ ∧ ψ) ↔ (φ ∨ ¬ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |