NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm4.55 GIF version

Theorem pm4.55 480
Description: Theorem *4.55 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.55 (¬ (¬ φ ψ) ↔ (φ ¬ ψ))

Proof of Theorem pm4.55
StepHypRef Expression
1 pm4.54 479 . . 3 ((¬ φ ψ) ↔ ¬ (φ ¬ ψ))
21con2bii 322 . 2 ((φ ¬ ψ) ↔ ¬ (¬ φ ψ))
32bicomi 193 1 (¬ (¬ φ ψ) ↔ (φ ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator