| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm4.56 | GIF version | ||
| Description: Theorem *4.56 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm4.56 | ⊢ ((¬ φ ∧ ¬ ψ) ↔ ¬ (φ ∨ ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ioran 476 | . 2 ⊢ (¬ (φ ∨ ψ) ↔ (¬ φ ∧ ¬ ψ)) | |
| 2 | 1 | bicomi 193 | 1 ⊢ ((¬ φ ∧ ¬ ψ) ↔ ¬ (φ ∨ ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 | 
| This theorem is referenced by: oran 482 neanior 2602 | 
| Copyright terms: Public domain | W3C validator |