| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm4.87 | GIF version | ||
| Description: Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Eric Schmidt, 26-Oct-2006.) |
| Ref | Expression |
|---|---|
| pm4.87 | ⊢ (((((φ ∧ ψ) → χ) ↔ (φ → (ψ → χ))) ∧ ((φ → (ψ → χ)) ↔ (ψ → (φ → χ)))) ∧ ((ψ → (φ → χ)) ↔ ((ψ ∧ φ) → χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp 433 | . . 3 ⊢ (((φ ∧ ψ) → χ) ↔ (φ → (ψ → χ))) | |
| 2 | bi2.04 350 | . . 3 ⊢ ((φ → (ψ → χ)) ↔ (ψ → (φ → χ))) | |
| 3 | 1, 2 | pm3.2i 441 | . 2 ⊢ ((((φ ∧ ψ) → χ) ↔ (φ → (ψ → χ))) ∧ ((φ → (ψ → χ)) ↔ (ψ → (φ → χ)))) |
| 4 | impexp 433 | . . 3 ⊢ (((ψ ∧ φ) → χ) ↔ (ψ → (φ → χ))) | |
| 5 | 4 | bicomi 193 | . 2 ⊢ ((ψ → (φ → χ)) ↔ ((ψ ∧ φ) → χ)) |
| 6 | 3, 5 | pm3.2i 441 | 1 ⊢ (((((φ ∧ ψ) → χ) ↔ (φ → (ψ → χ))) ∧ ((φ → (ψ → χ)) ↔ (ψ → (φ → χ)))) ∧ ((ψ → (φ → χ)) ↔ ((ψ ∧ φ) → χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |