NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imbi1d GIF version

Theorem imbi1d 308
Description: Deduction adding a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.)
Hypothesis
Ref Expression
imbid.1 (φ → (ψχ))
Assertion
Ref Expression
imbi1d (φ → ((ψθ) ↔ (χθ)))

Proof of Theorem imbi1d
StepHypRef Expression
1 imbid.1 . . . 4 (φ → (ψχ))
21biimprd 214 . . 3 (φ → (χψ))
32imim1d 69 . 2 (φ → ((ψθ) → (χθ)))
41biimpd 198 . . 3 (φ → (ψχ))
54imim1d 69 . 2 (φ → ((χθ) → (ψθ)))
63, 5impbid 183 1 (φ → ((ψθ) ↔ (χθ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  imbi12d  311  imbi1  313  imim21b  356  pm5.33  848  con3th  924  ax12bOLD  1690  19.21t  1795  ax11v2  1992  drsb1  2022  ax11vALT  2097  ax11inda  2200  ax11v2-o  2201  ralcom2  2776  raleqf  2804  alexeq  2969  mo2icl  3016  sbc19.21g  3111  csbiebg  3176  ralss  3333  r19.37zv  3647  ssuni  3914  intmin4  3956  eqpw1uni  4331  nnsucelr  4429  nndisjeq  4430  preaddccan2lem1  4455  preaddccan2  4456  leltfintr  4459  ssfin  4471  ncfinlower  4484  sfinltfin  4536  spfinsfincl  4540  vfinspss  4552  vtoclr  4817  fun11  5160  funimass4  5369  dff13  5472  oprabid  5551  caovcan  5629  clos1conn  5880  trd  5922  frd  5923  extd  5924  antird  5929  antid  5930  ecoptocl  5997  enprmapc  6084  nclenn  6250  addccan2nc  6266  nchoicelem12  6301  nchoicelem16  6305  nchoicelem17  6306  fnfrec  6321
  Copyright terms: Public domain W3C validator