New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imbi1d | GIF version |
Description: Deduction adding a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
imbi1d | ⊢ (φ → ((ψ → θ) ↔ (χ → θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . . 4 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | biimprd 214 | . . 3 ⊢ (φ → (χ → ψ)) |
3 | 2 | imim1d 69 | . 2 ⊢ (φ → ((ψ → θ) → (χ → θ))) |
4 | 1 | biimpd 198 | . . 3 ⊢ (φ → (ψ → χ)) |
5 | 4 | imim1d 69 | . 2 ⊢ (φ → ((χ → θ) → (ψ → θ))) |
6 | 3, 5 | impbid 183 | 1 ⊢ (φ → ((ψ → θ) ↔ (χ → θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: imbi12d 311 imbi1 313 imim21b 356 pm5.33 848 con3th 924 ax12bOLD 1690 19.21t 1795 ax11v2 1992 drsb1 2022 ax11vALT 2097 ax11inda 2200 ax11v2-o 2201 ralcom2 2776 raleqf 2804 alexeq 2969 mo2icl 3016 sbc19.21g 3111 csbiebg 3176 ralss 3333 r19.37zv 3647 ssuni 3914 intmin4 3956 eqpw1uni 4331 nnsucelr 4429 nndisjeq 4430 preaddccan2lem1 4455 preaddccan2 4456 leltfintr 4459 ssfin 4471 ncfinlower 4484 sfinltfin 4536 spfinsfincl 4540 vfinspss 4552 vtoclr 4817 fun11 5160 funimass4 5369 dff13 5472 oprabid 5551 caovcan 5629 clos1conn 5880 trd 5922 frd 5923 extd 5924 antird 5929 antid 5930 ecoptocl 5997 enprmapc 6084 nclenn 6250 addccan2nc 6266 nchoicelem12 6301 nchoicelem16 6305 nchoicelem17 6306 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |