New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.32i | GIF version |
Description: Distribution of implication over biconditional (inference rule). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.32i.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
pm5.32i | ⊢ ((φ ∧ ψ) ↔ (φ ∧ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32i.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
2 | pm5.32 617 | . 2 ⊢ ((φ → (ψ ↔ χ)) ↔ ((φ ∧ ψ) ↔ (φ ∧ χ))) | |
3 | 1, 2 | mpbi 199 | 1 ⊢ ((φ ∧ ψ) ↔ (φ ∧ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: pm5.32ri 619 biadan2 623 anbi2i 675 abai 770 anabs5 784 pm5.33 848 2eu8 2291 eq2tri 2412 rexbiia 2648 reubiia 2797 rmobiia 2802 rabbiia 2850 ceqsrexbv 2974 euxfr 3023 2reu5 3045 eldif 3222 dfpss3 3356 elimif 3692 eldifsn 3840 elrint 3968 elriin 4039 ltfinex 4465 dfevenfin2 4513 dfoddfin2 4514 opeq 4620 setconslem6 4737 rabxp 4815 eliunxp 4822 elres 4996 fncnv 5159 dff1o5 5296 respreima 5411 dff4 5422 dffo3 5423 fsn 5433 fconst3 5458 fconst4 5459 dff13 5472 isores2 5494 isoini 5498 eloprabga 5579 resoprab 5582 fnov 5592 ov6g 5601 mpt2mptx 5709 txpcofun 5804 addcfnex 5825 brpprod 5840 tcfnex 6245 addccan2nclem1 6264 nchoicelem16 6305 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |