| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm5.6 | GIF version | ||
| Description: Conjunction in antecedent versus disjunction in consequent. Theorem *5.6 of [WhiteheadRussell] p. 125. (Contributed by NM, 8-Jun-1994.) |
| Ref | Expression |
|---|---|
| pm5.6 | ⊢ (((φ ∧ ¬ ψ) → χ) ↔ (φ → (ψ ∨ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp 433 | . 2 ⊢ (((φ ∧ ¬ ψ) → χ) ↔ (φ → (¬ ψ → χ))) | |
| 2 | df-or 359 | . . 3 ⊢ ((ψ ∨ χ) ↔ (¬ ψ → χ)) | |
| 3 | 2 | imbi2i 303 | . 2 ⊢ ((φ → (ψ ∨ χ)) ↔ (φ → (¬ ψ → χ))) |
| 4 | 1, 3 | bitr4i 243 | 1 ⊢ (((φ ∧ ¬ ψ) → χ) ↔ (φ → (ψ ∨ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: ssundif 3634 |
| Copyright terms: Public domain | W3C validator |