NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.6 GIF version

Theorem pm5.6 878
Description: Conjunction in antecedent versus disjunction in consequent. Theorem *5.6 of [WhiteheadRussell] p. 125. (Contributed by NM, 8-Jun-1994.)
Assertion
Ref Expression
pm5.6 (((φ ¬ ψ) → χ) ↔ (φ → (ψ χ)))

Proof of Theorem pm5.6
StepHypRef Expression
1 impexp 433 . 2 (((φ ¬ ψ) → χ) ↔ (φ → (¬ ψχ)))
2 df-or 359 . . 3 ((ψ χ) ↔ (¬ ψχ))
32imbi2i 303 . 2 ((φ → (ψ χ)) ↔ (φ → (¬ ψχ)))
41, 3bitr4i 243 1 (((φ ¬ ψ) → χ) ↔ (φ → (ψ χ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  ssundif  3634
  Copyright terms: Public domain W3C validator