New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssundif | GIF version |
Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.) |
Ref | Expression |
---|---|
ssundif | ⊢ (A ⊆ (B ∪ C) ↔ (A ∖ B) ⊆ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.6 878 | . . . 4 ⊢ (((x ∈ A ∧ ¬ x ∈ B) → x ∈ C) ↔ (x ∈ A → (x ∈ B ∨ x ∈ C))) | |
2 | eldif 3222 | . . . . 5 ⊢ (x ∈ (A ∖ B) ↔ (x ∈ A ∧ ¬ x ∈ B)) | |
3 | 2 | imbi1i 315 | . . . 4 ⊢ ((x ∈ (A ∖ B) → x ∈ C) ↔ ((x ∈ A ∧ ¬ x ∈ B) → x ∈ C)) |
4 | elun 3221 | . . . . 5 ⊢ (x ∈ (B ∪ C) ↔ (x ∈ B ∨ x ∈ C)) | |
5 | 4 | imbi2i 303 | . . . 4 ⊢ ((x ∈ A → x ∈ (B ∪ C)) ↔ (x ∈ A → (x ∈ B ∨ x ∈ C))) |
6 | 1, 3, 5 | 3bitr4ri 269 | . . 3 ⊢ ((x ∈ A → x ∈ (B ∪ C)) ↔ (x ∈ (A ∖ B) → x ∈ C)) |
7 | 6 | albii 1566 | . 2 ⊢ (∀x(x ∈ A → x ∈ (B ∪ C)) ↔ ∀x(x ∈ (A ∖ B) → x ∈ C)) |
8 | dfss2 3263 | . 2 ⊢ (A ⊆ (B ∪ C) ↔ ∀x(x ∈ A → x ∈ (B ∪ C))) | |
9 | dfss2 3263 | . 2 ⊢ ((A ∖ B) ⊆ C ↔ ∀x(x ∈ (A ∖ B) → x ∈ C)) | |
10 | 7, 8, 9 | 3bitr4i 268 | 1 ⊢ (A ⊆ (B ∪ C) ↔ (A ∖ B) ⊆ C) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 ∖ cdif 3207 ∪ cun 3208 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 |
This theorem is referenced by: difcom 3635 uneqdifeq 3639 ssunsn2 3866 pwadjoin 4120 |
Copyright terms: Public domain | W3C validator |