| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pm5.44 | GIF version | ||
| Description: Theorem *5.44 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm5.44 | ⊢ ((φ → ψ) → ((φ → χ) ↔ (φ → (ψ ∧ χ)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcab 833 | . 2 ⊢ ((φ → (ψ ∧ χ)) ↔ ((φ → ψ) ∧ (φ → χ))) | |
| 2 | 1 | baibr 872 | 1 ⊢ ((φ → ψ) → ((φ → χ) ↔ (φ → (ψ ∧ χ)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: reldisj 3595 |
| Copyright terms: Public domain | W3C validator |