| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm5.44 | GIF version | ||
| Description: Theorem *5.44 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm5.44 | ⊢ ((φ → ψ) → ((φ → χ) ↔ (φ → (ψ ∧ χ)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | jcab 833 | . 2 ⊢ ((φ → (ψ ∧ χ)) ↔ ((φ → ψ) ∧ (φ → χ))) | |
| 2 | 1 | baibr 872 | 1 ⊢ ((φ → ψ) → ((φ → χ) ↔ (φ → (ψ ∧ χ)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: reldisj 3595 | 
| Copyright terms: Public domain | W3C validator |