New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.7 | GIF version |
Description: Disjunction distributes over the biconditional. Theorem *5.7 of [WhiteheadRussell] p. 125. This theorem is similar to orbidi 898. (Contributed by Roy F. Longton, 21-Jun-2005.) |
Ref | Expression |
---|---|
pm5.7 | ⊢ (((φ ∨ χ) ↔ (ψ ∨ χ)) ↔ (χ ∨ (φ ↔ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbidi 898 | . 2 ⊢ ((χ ∨ (φ ↔ ψ)) ↔ ((χ ∨ φ) ↔ (χ ∨ ψ))) | |
2 | orcom 376 | . . 3 ⊢ ((χ ∨ φ) ↔ (φ ∨ χ)) | |
3 | orcom 376 | . . 3 ⊢ ((χ ∨ ψ) ↔ (ψ ∨ χ)) | |
4 | 2, 3 | bibi12i 306 | . 2 ⊢ (((χ ∨ φ) ↔ (χ ∨ ψ)) ↔ ((φ ∨ χ) ↔ (ψ ∨ χ))) |
5 | 1, 4 | bitr2i 241 | 1 ⊢ (((φ ∨ χ) ↔ (ψ ∨ χ)) ↔ (χ ∨ (φ ↔ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |