| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > bigolden | GIF version | ||
| Description: Dijkstra-Scholten's Golden Rule for calculational proofs. (Contributed by NM, 10-Jan-2005.) |
| Ref | Expression |
|---|---|
| bigolden | ⊢ (((φ ∧ ψ) ↔ φ) ↔ (ψ ↔ (φ ∨ ψ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71 611 | . 2 ⊢ ((φ → ψ) ↔ (φ ↔ (φ ∧ ψ))) | |
| 2 | pm4.72 846 | . 2 ⊢ ((φ → ψ) ↔ (ψ ↔ (φ ∨ ψ))) | |
| 3 | bicom 191 | . 2 ⊢ ((φ ↔ (φ ∧ ψ)) ↔ ((φ ∧ ψ) ↔ φ)) | |
| 4 | 1, 2, 3 | 3bitr3ri 267 | 1 ⊢ (((φ ∧ ψ) ↔ φ) ↔ (ψ ↔ (φ ∨ ψ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |