New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biluk | GIF version |
Description: Lukasiewicz's shortest axiom for equivalential calculus. Storrs McCall, ed., Polish Logic 1920-1939 (Oxford, 1967), p. 96. (Contributed by NM, 10-Jan-2005.) |
Ref | Expression |
---|---|
biluk | ⊢ ((φ ↔ ψ) ↔ ((χ ↔ ψ) ↔ (φ ↔ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 191 | . . . . 5 ⊢ ((φ ↔ ψ) ↔ (ψ ↔ φ)) | |
2 | 1 | bibi1i 305 | . . . 4 ⊢ (((φ ↔ ψ) ↔ χ) ↔ ((ψ ↔ φ) ↔ χ)) |
3 | biass 348 | . . . 4 ⊢ (((ψ ↔ φ) ↔ χ) ↔ (ψ ↔ (φ ↔ χ))) | |
4 | 2, 3 | bitri 240 | . . 3 ⊢ (((φ ↔ ψ) ↔ χ) ↔ (ψ ↔ (φ ↔ χ))) |
5 | biass 348 | . . 3 ⊢ ((((φ ↔ ψ) ↔ χ) ↔ (ψ ↔ (φ ↔ χ))) ↔ ((φ ↔ ψ) ↔ (χ ↔ (ψ ↔ (φ ↔ χ))))) | |
6 | 4, 5 | mpbi 199 | . 2 ⊢ ((φ ↔ ψ) ↔ (χ ↔ (ψ ↔ (φ ↔ χ)))) |
7 | biass 348 | . 2 ⊢ (((χ ↔ ψ) ↔ (φ ↔ χ)) ↔ (χ ↔ (ψ ↔ (φ ↔ χ)))) | |
8 | 6, 7 | bitr4i 243 | 1 ⊢ ((φ ↔ ψ) ↔ ((χ ↔ ψ) ↔ (φ ↔ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |