New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bitr2i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2i.1 | ⊢ (φ ↔ ψ) |
bitr2i.2 | ⊢ (ψ ↔ χ) |
Ref | Expression |
---|---|
bitr2i | ⊢ (χ ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | bitr2i.2 | . . 3 ⊢ (ψ ↔ χ) | |
3 | 1, 2 | bitri 240 | . 2 ⊢ (φ ↔ χ) |
4 | 3 | bicomi 193 | 1 ⊢ (χ ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3bitrri 263 3bitr2ri 265 3bitr4ri 269 nan 563 pm4.15 564 pm5.17 858 pm4.83 895 pm5.7 900 3or6 1263 nanim 1292 hadnot 1393 19.12vv 1898 2exsb 2132 2eu4 2287 cvjust 2348 abbi 2464 spc3gv 2945 sbc8g 3054 ss2rab 3343 difdif 3393 ddif 3399 unass 3421 unss 3438 undi 3503 rabeq0 3573 disj 3592 ssindif0 3605 pwsnALT 3883 dfpss4 3889 iinrab2 4030 imacok 4283 dfaddc2 4382 dfnnc2 4396 nnsucelr 4429 tfinnn 4535 eqvinop 4607 unopab 4639 elswap 4741 dfswap2 4742 ssrnres 5060 cnvresima 5078 coundi 5083 coundir 5084 coass 5098 fun11 5160 fununi 5161 funcnvuni 5162 fsn 5433 fconstfv 5457 eloprabga 5579 funoprabg 5584 releqmpt2 5810 funsex 5829 brpprod 5840 fvfullfunlem1 5862 enpw1lem1 6062 enpw1pw 6076 lecex 6116 nncdiv3lem1 6276 nchoicelem11 6300 |
Copyright terms: Public domain | W3C validator |