New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bibi12i | GIF version |
Description: The equivalence of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bibi.a | ⊢ (φ ↔ ψ) |
bibi12.2 | ⊢ (χ ↔ θ) |
Ref | Expression |
---|---|
bibi12i | ⊢ ((φ ↔ χ) ↔ (ψ ↔ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi12.2 | . . 3 ⊢ (χ ↔ θ) | |
2 | 1 | bibi2i 304 | . 2 ⊢ ((φ ↔ χ) ↔ (φ ↔ θ)) |
3 | bibi.a | . . 3 ⊢ (φ ↔ ψ) | |
4 | 3 | bibi1i 305 | . 2 ⊢ ((φ ↔ θ) ↔ (ψ ↔ θ)) |
5 | 2, 4 | bitri 240 | 1 ⊢ ((φ ↔ χ) ↔ (ψ ↔ θ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: pm5.32 617 orbidi 898 pm5.7 900 xorbi12i 1314 axcnvprim 4092 axsiprim 4094 axins2prim 4096 axins3prim 4097 pw111 4171 cnvkexg 4287 ssetkex 4295 sikexg 4297 ins2kexg 4306 ins3kexg 4307 dfaddc2 4382 nnsucelrlem1 4425 ltfinex 4465 eqpwrelk 4479 eqpw1relk 4480 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 srelk 4525 tfinnnlem1 4534 dfop2lem1 4574 setconslem2 4733 setconslem3 4734 setconslem7 4738 dfswap2 4742 isocnv2 5493 brimage 5794 releqel 5808 releqmpt2 5810 extex 5916 qsexg 5983 ovcelem1 6172 tcfnex 6245 |
Copyright terms: Public domain | W3C validator |