New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > prlem2 | GIF version |
Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
Ref | Expression |
---|---|
prlem2 | ⊢ (((φ ∧ ψ) ∨ (χ ∧ θ)) ↔ ((φ ∨ χ) ∧ ((φ ∧ ψ) ∨ (χ ∧ θ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . . 3 ⊢ ((φ ∧ ψ) → φ) | |
2 | simpl 443 | . . 3 ⊢ ((χ ∧ θ) → χ) | |
3 | 1, 2 | orim12i 502 | . 2 ⊢ (((φ ∧ ψ) ∨ (χ ∧ θ)) → (φ ∨ χ)) |
4 | 3 | pm4.71ri 614 | 1 ⊢ (((φ ∧ ψ) ∨ (χ ∧ θ)) ↔ ((φ ∨ χ) ∧ ((φ ∧ ψ) ∨ (χ ∧ θ)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |