New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.71ri | GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (φ ↔ (ψ ∧ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . 2 ⊢ (φ → ψ) | |
2 | pm4.71r 612 | . 2 ⊢ ((φ → ψ) ↔ (φ ↔ (ψ ∧ φ))) | |
3 | 1, 2 | mpbi 199 | 1 ⊢ (φ ↔ (ψ ∧ φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: biadan2 623 anabs7 785 orabs 828 prlem2 929 sb6 2099 2moswap 2279 opkelimagekg 4272 dfpw12 4302 dfnnc2 4396 eliunxp 4822 elres 4996 imadmrn 5009 elxp4 5109 dffun9 5136 funcnv 5157 funcnv3 5158 dff1o6 5476 txpcofun 5804 |
Copyright terms: Public domain | W3C validator |