New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > prlem1 | GIF version |
Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
Ref | Expression |
---|---|
prlem1.1 | ⊢ (φ → (η ↔ χ)) |
prlem1.2 | ⊢ (ψ → ¬ θ) |
Ref | Expression |
---|---|
prlem1 | ⊢ (φ → (ψ → (((ψ ∧ χ) ∨ (θ ∧ τ)) → η))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prlem1.1 | . . . . 5 ⊢ (φ → (η ↔ χ)) | |
2 | 1 | biimprd 214 | . . . 4 ⊢ (φ → (χ → η)) |
3 | 2 | adantld 453 | . . 3 ⊢ (φ → ((ψ ∧ χ) → η)) |
4 | prlem1.2 | . . . . 5 ⊢ (ψ → ¬ θ) | |
5 | 4 | pm2.21d 98 | . . . 4 ⊢ (ψ → (θ → η)) |
6 | 5 | adantrd 454 | . . 3 ⊢ (ψ → ((θ ∧ τ) → η)) |
7 | 3, 6 | jaao 495 | . 2 ⊢ ((φ ∧ ψ) → (((ψ ∧ χ) ∨ (θ ∧ τ)) → η)) |
8 | 7 | ex 423 | 1 ⊢ (φ → (ψ → (((ψ ∧ χ) ∨ (θ ∧ τ)) → η))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |