| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > prlem1 | GIF version | ||
| Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 5-Jan-2013.) |
| Ref | Expression |
|---|---|
| prlem1.1 | ⊢ (φ → (η ↔ χ)) |
| prlem1.2 | ⊢ (ψ → ¬ θ) |
| Ref | Expression |
|---|---|
| prlem1 | ⊢ (φ → (ψ → (((ψ ∧ χ) ∨ (θ ∧ τ)) → η))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prlem1.1 | . . . . 5 ⊢ (φ → (η ↔ χ)) | |
| 2 | 1 | biimprd 214 | . . . 4 ⊢ (φ → (χ → η)) |
| 3 | 2 | adantld 453 | . . 3 ⊢ (φ → ((ψ ∧ χ) → η)) |
| 4 | prlem1.2 | . . . . 5 ⊢ (ψ → ¬ θ) | |
| 5 | 4 | pm2.21d 98 | . . . 4 ⊢ (ψ → (θ → η)) |
| 6 | 5 | adantrd 454 | . . 3 ⊢ (ψ → ((θ ∧ τ) → η)) |
| 7 | 3, 6 | jaao 495 | . 2 ⊢ ((φ ∧ ψ) → (((ψ ∧ χ) ∨ (θ ∧ τ)) → η)) |
| 8 | 7 | ex 423 | 1 ⊢ (φ → (ψ → (((ψ ∧ χ) ∨ (θ ∧ τ)) → η))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |