Proof of Theorem re1luk2
| Step | Hyp | Ref
| Expression |
| 1 | | tbw-negdf 1464 |
. . . 4
⊢ (((¬ φ → (φ → ⊥ )) → (((φ → ⊥ ) → ¬ φ) → ⊥ )) → ⊥
) |
| 2 | | tbw-ax2 1466 |
. . . . 5
⊢ ((((φ → ⊥ ) → ¬ φ) → ⊥ ) → ((¬ φ → (φ → ⊥ )) → (((φ → ⊥ ) → ¬ φ) → ⊥ ))) |
| 3 | | tbwlem4 1473 |
. . . . 5
⊢ (((((φ → ⊥ ) → ¬ φ) → ⊥ ) → ((¬ φ → (φ → ⊥ )) → (((φ → ⊥ ) → ¬ φ) → ⊥ ))) → ((((¬ φ → (φ → ⊥ )) → (((φ → ⊥ ) → ¬ φ) → ⊥ )) → ⊥ ) →
((φ → ⊥ ) → ¬ φ))) |
| 4 | 2, 3 | ax-mp 5 |
. . . 4
⊢ ((((¬ φ → (φ → ⊥ )) → (((φ → ⊥ ) → ¬ φ) → ⊥ )) → ⊥ ) →
((φ → ⊥ ) → ¬ φ)) |
| 5 | 1, 4 | ax-mp 5 |
. . 3
⊢ ((φ → ⊥ ) → ¬ φ) |
| 6 | | tbw-ax1 1465 |
. . 3
⊢ (((φ → ⊥ ) → ¬ φ) → ((¬ φ → φ) → ((φ → ⊥ ) → φ))) |
| 7 | 5, 6 | ax-mp 5 |
. 2
⊢ ((¬ φ → φ) → ((φ → ⊥ ) → φ)) |
| 8 | | tbw-ax3 1467 |
. 2
⊢ (((φ → ⊥ ) → φ) → φ) |
| 9 | 7, 8 | tbwsyl 1469 |
1
⊢ ((¬ φ → φ) → φ) |