| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > tbw-negdf | GIF version | ||
| Description: The definition of negation, in terms of → and ⊥. (Contributed by Anthony Hart, 15-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| tbw-negdf | ⊢ (((¬ φ → (φ → ⊥ )) → (((φ → ⊥ ) → ¬ φ) → ⊥ )) → ⊥ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 100 | . . 3 ⊢ (¬ φ → (φ → ⊥ )) | |
| 2 | ax-1 6 | . . . . 5 ⊢ (¬ φ → ((φ → ⊥ ) → ¬ φ)) | |
| 3 | falim 1328 | . . . . 5 ⊢ ( ⊥ → ((φ → ⊥ ) → ¬ φ)) | |
| 4 | 2, 3 | ja 153 | . . . 4 ⊢ ((φ → ⊥ ) → ((φ → ⊥ ) → ¬ φ)) |
| 5 | 4 | pm2.43i 43 | . . 3 ⊢ ((φ → ⊥ ) → ¬ φ) |
| 6 | 1, 5 | impbii 180 | . 2 ⊢ (¬ φ ↔ (φ → ⊥ )) |
| 7 | tbw-bijust 1463 | . 2 ⊢ ((¬ φ ↔ (φ → ⊥ )) ↔ (((¬ φ → (φ → ⊥ )) → (((φ → ⊥ ) → ¬ φ) → ⊥ )) → ⊥ )) | |
| 8 | 6, 7 | mpbi 199 | 1 ⊢ (((¬ φ → (φ → ⊥ )) → (((φ → ⊥ ) → ¬ φ) → ⊥ )) → ⊥ ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ⊥ wfal 1317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
| This theorem is referenced by: re1luk2 1476 re1luk3 1477 |
| Copyright terms: Public domain | W3C validator |