New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > re1luk3 | GIF version |
Description: luk-3 1422 derived from the Tarski-Bernays-Wajsberg
axioms.
This theorem, along with re1luk1 1475 and re1luk2 1476 proves that tbw-ax1 1465, tbw-ax2 1466, tbw-ax3 1467, and tbw-ax4 1468, with ax-mp 5 can be used as a complete axiom system for all of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
re1luk3 | ⊢ (φ → (¬ φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tbw-negdf 1464 | . . 3 ⊢ (((¬ φ → (φ → ⊥ )) → (((φ → ⊥ ) → ¬ φ) → ⊥ )) → ⊥ ) | |
2 | tbwlem5 1474 | . . 3 ⊢ ((((¬ φ → (φ → ⊥ )) → (((φ → ⊥ ) → ¬ φ) → ⊥ )) → ⊥ ) → (¬ φ → (φ → ⊥ ))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (¬ φ → (φ → ⊥ )) |
4 | tbw-ax4 1468 | . . . 4 ⊢ ( ⊥ → ψ) | |
5 | tbw-ax1 1465 | . . . . 5 ⊢ ((φ → ⊥ ) → (( ⊥ → ψ) → (φ → ψ))) | |
6 | tbwlem1 1470 | . . . . 5 ⊢ (((φ → ⊥ ) → (( ⊥ → ψ) → (φ → ψ))) → (( ⊥ → ψ) → ((φ → ⊥ ) → (φ → ψ)))) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (( ⊥ → ψ) → ((φ → ⊥ ) → (φ → ψ))) |
8 | 4, 7 | ax-mp 5 | . . 3 ⊢ ((φ → ⊥ ) → (φ → ψ)) |
9 | tbwlem1 1470 | . . 3 ⊢ (((φ → ⊥ ) → (φ → ψ)) → (φ → ((φ → ⊥ ) → ψ))) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (φ → ((φ → ⊥ ) → ψ)) |
11 | tbw-ax1 1465 | . 2 ⊢ ((¬ φ → (φ → ⊥ )) → (((φ → ⊥ ) → ψ) → (¬ φ → ψ))) | |
12 | 3, 10, 11 | mpsyl 59 | 1 ⊢ (φ → (¬ φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ⊥ wfal 1317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |