Proof of Theorem tbwlem4
Step | Hyp | Ref
| Expression |
1 | | tbw-ax4 1468 |
. . . . 5
⊢ ( ⊥ →
⊥ ) |
2 | | tbw-ax1 1465 |
. . . . . 6
⊢ ((ψ → ⊥ ) → (( ⊥ →
⊥ ) → (ψ → ⊥
))) |
3 | | tbwlem1 1470 |
. . . . . 6
⊢ (((ψ → ⊥ ) → (( ⊥ →
⊥ ) → (ψ → ⊥ )))
→ (( ⊥ → ⊥ ) → ((ψ → ⊥ ) → (ψ → ⊥ )))) |
4 | 2, 3 | ax-mp 5 |
. . . . 5
⊢ (( ⊥ →
⊥ ) → ((ψ → ⊥ )
→ (ψ → ⊥
))) |
5 | 1, 4 | ax-mp 5 |
. . . 4
⊢ ((ψ → ⊥ ) → (ψ → ⊥ )) |
6 | | tbwlem1 1470 |
. . . 4
⊢ (((ψ → ⊥ ) → (ψ → ⊥ )) → (ψ → ((ψ → ⊥ ) → ⊥
))) |
7 | 5, 6 | ax-mp 5 |
. . 3
⊢ (ψ → ((ψ → ⊥ ) → ⊥
)) |
8 | | tbw-ax1 1465 |
. . . 4
⊢ (((φ → ⊥ ) → ψ) → ((ψ → ((ψ → ⊥ ) → ⊥ )) →
((φ → ⊥ ) → ((ψ → ⊥ ) → ⊥
)))) |
9 | | tbwlem1 1470 |
. . . 4
⊢ ((((φ → ⊥ ) → ψ) → ((ψ → ((ψ → ⊥ ) → ⊥ )) →
((φ → ⊥ ) → ((ψ → ⊥ ) → ⊥ )))) →
((ψ → ((ψ → ⊥ ) → ⊥ )) →
(((φ → ⊥ ) → ψ) → ((φ → ⊥ ) → ((ψ → ⊥ ) → ⊥
))))) |
10 | 8, 9 | ax-mp 5 |
. . 3
⊢ ((ψ → ((ψ → ⊥ ) → ⊥ )) →
(((φ → ⊥ ) → ψ) → ((φ → ⊥ ) → ((ψ → ⊥ ) → ⊥
)))) |
11 | 7, 10 | ax-mp 5 |
. 2
⊢ (((φ → ⊥ ) → ψ) → ((φ → ⊥ ) → ((ψ → ⊥ ) → ⊥
))) |
12 | | tbwlem2 1471 |
. . 3
⊢ (((φ → ⊥ ) → ((ψ → ⊥ ) → ⊥ )) →
((((φ → ⊥ ) → φ) → φ) → ((ψ → ⊥ ) → φ))) |
13 | | tbwlem3 1472 |
. . 3
⊢ (((((φ → ⊥ ) → φ) → φ) → ((ψ → ⊥ ) → φ)) → ((ψ → ⊥ ) → φ)) |
14 | 12, 13 | tbwsyl 1469 |
. 2
⊢ (((φ → ⊥ ) → ((ψ → ⊥ ) → ⊥ )) →
((ψ → ⊥ ) → φ)) |
15 | 11, 14 | tbwsyl 1469 |
1
⊢ (((φ → ⊥ ) → ψ) → ((ψ → ⊥ ) → φ)) |