NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  tbwsyl GIF version

Theorem tbwsyl 1469
Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
tbwsyl.1 (φψ)
tbwsyl.2 (ψχ)
Assertion
Ref Expression
tbwsyl (φχ)

Proof of Theorem tbwsyl
StepHypRef Expression
1 tbwsyl.2 . 2 (ψχ)
2 tbwsyl.1 . . 3 (φψ)
3 tbw-ax1 1465 . . 3 ((φψ) → ((ψχ) → (φχ)))
42, 3ax-mp 5 . 2 ((ψχ) → (φχ))
51, 4ax-mp 5 1 (φχ)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  tbwlem1  1470  tbwlem2  1471  tbwlem3  1472  tbwlem4  1473  tbwlem5  1474  re1luk2  1476
  Copyright terms: Public domain W3C validator