New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > re1tbw1 | GIF version |
Description: tbw-ax1 1465 rederived from merco2 1501. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
re1tbw1 | ⊢ ((φ → ψ) → ((ψ → χ) → (φ → χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mercolem8 1509 | . . 3 ⊢ ((φ → ψ) → ((ψ → (φ → χ)) → ((φ → ψ) → ((ψ → χ) → (φ → χ))))) | |
2 | mercolem3 1504 | . . 3 ⊢ ((ψ → χ) → (ψ → (φ → χ))) | |
3 | mercolem6 1507 | . . 3 ⊢ (((φ → ψ) → ((ψ → (φ → χ)) → ((φ → ψ) → ((ψ → χ) → (φ → χ))))) → ((ψ → (φ → χ)) → ((φ → ψ) → ((ψ → χ) → (φ → χ))))) | |
4 | 1, 2, 3 | mpsyl 59 | . 2 ⊢ ((ψ → χ) → ((φ → ψ) → ((ψ → χ) → (φ → χ)))) |
5 | mercolem6 1507 | . 2 ⊢ (((ψ → χ) → ((φ → ψ) → ((ψ → χ) → (φ → χ)))) → ((φ → ψ) → ((ψ → χ) → (φ → χ)))) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ((φ → ψ) → ((ψ → χ) → (φ → χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-tru 1319 df-fal 1320 |
This theorem is referenced by: re1tbw4 1513 |
Copyright terms: Public domain | W3C validator |