New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rmo5 | GIF version |
Description: Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmo5 | ⊢ (∃*x ∈ A φ ↔ (∃x ∈ A φ → ∃!x ∈ A φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2209 | . 2 ⊢ (∃*x(x ∈ A ∧ φ) ↔ (∃x(x ∈ A ∧ φ) → ∃!x(x ∈ A ∧ φ))) | |
2 | df-rmo 2623 | . 2 ⊢ (∃*x ∈ A φ ↔ ∃*x(x ∈ A ∧ φ)) | |
3 | df-rex 2621 | . . 3 ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) | |
4 | df-reu 2622 | . . 3 ⊢ (∃!x ∈ A φ ↔ ∃!x(x ∈ A ∧ φ)) | |
5 | 3, 4 | imbi12i 316 | . 2 ⊢ ((∃x ∈ A φ → ∃!x ∈ A φ) ↔ (∃x(x ∈ A ∧ φ) → ∃!x(x ∈ A ∧ φ))) |
6 | 1, 2, 5 | 3bitr4i 268 | 1 ⊢ (∃*x ∈ A φ ↔ (∃x ∈ A φ → ∃!x ∈ A φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 ∃!weu 2204 ∃*wmo 2205 ∃wrex 2616 ∃!wreu 2617 ∃*wrmo 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-mo 2209 df-rex 2621 df-reu 2622 df-rmo 2623 |
This theorem is referenced by: nrexrmo 2829 cbvrmo 2835 |
Copyright terms: Public domain | W3C validator |