New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-rex | GIF version |
Description: Define restricted existential quantification. Special case of Definition 4.15(4) of [TakeutiZaring] p. 22. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
df-rex | ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff φ | |
2 | vx | . . 3 setvar x | |
3 | cA | . . 3 class A | |
4 | 1, 2, 3 | wrex 2616 | . 2 wff ∃x ∈ A φ |
5 | 2 | cv 1641 | . . . . 5 class x |
6 | 5, 3 | wcel 1710 | . . . 4 wff x ∈ A |
7 | 6, 1 | wa 358 | . . 3 wff (x ∈ A ∧ φ) |
8 | 7, 2 | wex 1541 | . 2 wff ∃x(x ∈ A ∧ φ) |
9 | 4, 8 | wb 176 | 1 wff (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) |
Copyright terms: Public domain | W3C validator |