Home | New
Foundations Explorer Theorem List (p. 29 of 64) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > NFE Home Page > Theorem List Contents This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rmobidv 2801* | Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.) |
⊢ (φ → (ψ ↔ χ)) ⇒ ⊢ (φ → (∃*x ∈ A ψ ↔ ∃*x ∈ A χ)) | ||
Theorem | rmobiia 2802 | Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.) |
⊢ (x ∈ A → (φ ↔ ψ)) ⇒ ⊢ (∃*x ∈ A φ ↔ ∃*x ∈ A ψ) | ||
Theorem | rmobii 2803 | Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.) |
⊢ (φ ↔ ψ) ⇒ ⊢ (∃*x ∈ A φ ↔ ∃*x ∈ A ψ) | ||
Theorem | raleqf 2804 | Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ ℲxA & ⊢ ℲxB ⇒ ⊢ (A = B → (∀x ∈ A φ ↔ ∀x ∈ B φ)) | ||
Theorem | rexeqf 2805 | Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ ℲxA & ⊢ ℲxB ⇒ ⊢ (A = B → (∃x ∈ A φ ↔ ∃x ∈ B φ)) | ||
Theorem | reueq1f 2806 | Equality theorem for restricted uniqueness quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ ℲxA & ⊢ ℲxB ⇒ ⊢ (A = B → (∃!x ∈ A φ ↔ ∃!x ∈ B φ)) | ||
Theorem | rmoeq1f 2807 | Equality theorem for restricted uniqueness quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
⊢ ℲxA & ⊢ ℲxB ⇒ ⊢ (A = B → (∃*x ∈ A φ ↔ ∃*x ∈ B φ)) | ||
Theorem | raleq 2808* | Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
⊢ (A = B → (∀x ∈ A φ ↔ ∀x ∈ B φ)) | ||
Theorem | rexeq 2809* | Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
⊢ (A = B → (∃x ∈ A φ ↔ ∃x ∈ B φ)) | ||
Theorem | reueq1 2810* | Equality theorem for restricted uniqueness quantifier. (Contributed by NM, 5-Apr-2004.) |
⊢ (A = B → (∃!x ∈ A φ ↔ ∃!x ∈ B φ)) | ||
Theorem | rmoeq1 2811* | Equality theorem for restricted uniqueness quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
⊢ (A = B → (∃*x ∈ A φ ↔ ∃*x ∈ B φ)) | ||
Theorem | raleqi 2812* | Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ A = B ⇒ ⊢ (∀x ∈ A φ ↔ ∀x ∈ B φ) | ||
Theorem | rexeqi 2813* | Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ A = B ⇒ ⊢ (∃x ∈ A φ ↔ ∃x ∈ B φ) | ||
Theorem | raleqdv 2814* | Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.) |
⊢ (φ → A = B) ⇒ ⊢ (φ → (∀x ∈ A ψ ↔ ∀x ∈ B ψ)) | ||
Theorem | rexeqdv 2815* | Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
⊢ (φ → A = B) ⇒ ⊢ (φ → (∃x ∈ A ψ ↔ ∃x ∈ B ψ)) | ||
Theorem | raleqbi1dv 2816* | Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
⊢ (A = B → (φ ↔ ψ)) ⇒ ⊢ (A = B → (∀x ∈ A φ ↔ ∀x ∈ B ψ)) | ||
Theorem | rexeqbi1dv 2817* | Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) |
⊢ (A = B → (φ ↔ ψ)) ⇒ ⊢ (A = B → (∃x ∈ A φ ↔ ∃x ∈ B ψ)) | ||
Theorem | reueqd 2818* | Equality deduction for restricted uniqueness quantifier. (Contributed by NM, 5-Apr-2004.) |
⊢ (A = B → (φ ↔ ψ)) ⇒ ⊢ (A = B → (∃!x ∈ A φ ↔ ∃!x ∈ B ψ)) | ||
Theorem | rmoeqd 2819* | Equality deduction for restricted uniqueness quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
⊢ (A = B → (φ ↔ ψ)) ⇒ ⊢ (A = B → (∃*x ∈ A φ ↔ ∃*x ∈ B ψ)) | ||
Theorem | raleqbidv 2820* | Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
⊢ (φ → A = B) & ⊢ (φ → (ψ ↔ χ)) ⇒ ⊢ (φ → (∀x ∈ A ψ ↔ ∀x ∈ B χ)) | ||
Theorem | rexeqbidv 2821* | Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
⊢ (φ → A = B) & ⊢ (φ → (ψ ↔ χ)) ⇒ ⊢ (φ → (∃x ∈ A ψ ↔ ∃x ∈ B χ)) | ||
Theorem | raleqbidva 2822* | Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ (φ → A = B) & ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) ⇒ ⊢ (φ → (∀x ∈ A ψ ↔ ∀x ∈ B χ)) | ||
Theorem | rexeqbidva 2823* | Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ (φ → A = B) & ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) ⇒ ⊢ (φ → (∃x ∈ A ψ ↔ ∃x ∈ B χ)) | ||
Theorem | mormo 2824 | Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.) |
⊢ (∃*xφ → ∃*x ∈ A φ) | ||
Theorem | reu5 2825 | Restricted uniqueness in terms of "at most one." (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
⊢ (∃!x ∈ A φ ↔ (∃x ∈ A φ ∧ ∃*x ∈ A φ)) | ||
Theorem | reurex 2826 | Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
⊢ (∃!x ∈ A φ → ∃x ∈ A φ) | ||
Theorem | reurmo 2827 | Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
⊢ (∃!x ∈ A φ → ∃*x ∈ A φ) | ||
Theorem | rmo5 2828 | Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.) |
⊢ (∃*x ∈ A φ ↔ (∃x ∈ A φ → ∃!x ∈ A φ)) | ||
Theorem | nrexrmo 2829 | Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.) |
⊢ (¬ ∃x ∈ A φ → ∃*x ∈ A φ) | ||
Theorem | cbvralf 2830 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.) |
⊢ ℲxA & ⊢ ℲyA & ⊢ Ⅎyφ & ⊢ Ⅎxψ & ⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ (∀x ∈ A φ ↔ ∀y ∈ A ψ) | ||
Theorem | cbvrexf 2831 | Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) |
⊢ ℲxA & ⊢ ℲyA & ⊢ Ⅎyφ & ⊢ Ⅎxψ & ⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ (∃x ∈ A φ ↔ ∃y ∈ A ψ) | ||
Theorem | cbvral 2832* | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) |
⊢ Ⅎyφ & ⊢ Ⅎxψ & ⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ (∀x ∈ A φ ↔ ∀y ∈ A ψ) | ||
Theorem | cbvrex 2833* | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ Ⅎyφ & ⊢ Ⅎxψ & ⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ (∃x ∈ A φ ↔ ∃y ∈ A ψ) | ||
Theorem | cbvreu 2834* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎyφ & ⊢ Ⅎxψ & ⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ (∃!x ∈ A φ ↔ ∃!y ∈ A ψ) | ||
Theorem | cbvrmo 2835* | Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.) |
⊢ Ⅎyφ & ⊢ Ⅎxψ & ⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ (∃*x ∈ A φ ↔ ∃*y ∈ A ψ) | ||
Theorem | cbvralv 2836* | Change the bound variable of a restricted universal quantifier using implicit substitution. (Contributed by NM, 28-Jan-1997.) |
⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ (∀x ∈ A φ ↔ ∀y ∈ A ψ) | ||
Theorem | cbvrexv 2837* | Change the bound variable of a restricted existential quantifier using implicit substitution. (Contributed by NM, 2-Jun-1998.) |
⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ (∃x ∈ A φ ↔ ∃y ∈ A ψ) | ||
Theorem | cbvreuv 2838* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ (∃!x ∈ A φ ↔ ∃!y ∈ A ψ) | ||
Theorem | cbvrmov 2839* | Change the bound variable of a restricted uniqueness quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ (∃*x ∈ A φ ↔ ∃*y ∈ A ψ) | ||
Theorem | cbvraldva2 2840* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ ((φ ∧ x = y) → (ψ ↔ χ)) & ⊢ ((φ ∧ x = y) → A = B) ⇒ ⊢ (φ → (∀x ∈ A ψ ↔ ∀y ∈ B χ)) | ||
Theorem | cbvrexdva2 2841* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ ((φ ∧ x = y) → (ψ ↔ χ)) & ⊢ ((φ ∧ x = y) → A = B) ⇒ ⊢ (φ → (∃x ∈ A ψ ↔ ∃y ∈ B χ)) | ||
Theorem | cbvraldva 2842* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ ((φ ∧ x = y) → (ψ ↔ χ)) ⇒ ⊢ (φ → (∀x ∈ A ψ ↔ ∀y ∈ A χ)) | ||
Theorem | cbvrexdva 2843* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ ((φ ∧ x = y) → (ψ ↔ χ)) ⇒ ⊢ (φ → (∃x ∈ A ψ ↔ ∃y ∈ A χ)) | ||
Theorem | cbvral2v 2844* | Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.) |
⊢ (x = z → (φ ↔ χ)) & ⊢ (y = w → (χ ↔ ψ)) ⇒ ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀z ∈ A ∀w ∈ B ψ) | ||
Theorem | cbvrex2v 2845* | Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.) |
⊢ (x = z → (φ ↔ χ)) & ⊢ (y = w → (χ ↔ ψ)) ⇒ ⊢ (∃x ∈ A ∃y ∈ B φ ↔ ∃z ∈ A ∃w ∈ B ψ) | ||
Theorem | cbvral3v 2846* | Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.) |
⊢ (x = w → (φ ↔ χ)) & ⊢ (y = v → (χ ↔ θ)) & ⊢ (z = u → (θ ↔ ψ)) ⇒ ⊢ (∀x ∈ A ∀y ∈ B ∀z ∈ C φ ↔ ∀w ∈ A ∀v ∈ B ∀u ∈ C ψ) | ||
Theorem | cbvralsv 2847* | Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ (∀x ∈ A φ ↔ ∀y ∈ A [y / x]φ) | ||
Theorem | cbvrexsv 2848* | Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ (∃x ∈ A φ ↔ ∃y ∈ A [y / x]φ) | ||
Theorem | sbralie 2849* | Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.) |
⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ (∀x ∈ y φ ↔ [y / x]∀y ∈ x ψ) | ||
Theorem | rabbiia 2850 | Equivalent wff's yield equal restricted class abstractions (inference rule). (Contributed by NM, 22-May-1999.) |
⊢ (x ∈ A → (φ ↔ ψ)) ⇒ ⊢ {x ∈ A ∣ φ} = {x ∈ A ∣ ψ} | ||
Theorem | rabbidva 2851* | Equivalent wff's yield equal restricted class abstractions (deduction rule). (Contributed by NM, 28-Nov-2003.) |
⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) ⇒ ⊢ (φ → {x ∈ A ∣ ψ} = {x ∈ A ∣ χ}) | ||
Theorem | rabbidv 2852* | Equivalent wff's yield equal restricted class abstractions (deduction rule). (Contributed by NM, 10-Feb-1995.) |
⊢ (φ → (ψ ↔ χ)) ⇒ ⊢ (φ → {x ∈ A ∣ ψ} = {x ∈ A ∣ χ}) | ||
Theorem | rabeqf 2853 | Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) |
⊢ ℲxA & ⊢ ℲxB ⇒ ⊢ (A = B → {x ∈ A ∣ φ} = {x ∈ B ∣ φ}) | ||
Theorem | rabeq 2854* | Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
⊢ (A = B → {x ∈ A ∣ φ} = {x ∈ B ∣ φ}) | ||
Theorem | rabeqbidv 2855* | Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
⊢ (φ → A = B) & ⊢ (φ → (ψ ↔ χ)) ⇒ ⊢ (φ → {x ∈ A ∣ ψ} = {x ∈ B ∣ χ}) | ||
Theorem | rabeqbidva 2856* | Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.) |
⊢ (φ → A = B) & ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) ⇒ ⊢ (φ → {x ∈ A ∣ ψ} = {x ∈ B ∣ χ}) | ||
Theorem | rabeq2i 2857 | Inference rule from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
⊢ A = {x ∈ B ∣ φ} ⇒ ⊢ (x ∈ A ↔ (x ∈ B ∧ φ)) | ||
Theorem | cbvrab 2858 | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.) |
⊢ ℲxA & ⊢ ℲyA & ⊢ Ⅎyφ & ⊢ Ⅎxψ & ⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ {x ∈ A ∣ φ} = {y ∈ A ∣ ψ} | ||
Theorem | cbvrabv 2859* | Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.) |
⊢ (x = y → (φ ↔ ψ)) ⇒ ⊢ {x ∈ A ∣ φ} = {y ∈ A ∣ ψ} | ||
Syntax | cvv 2860 | Extend class notation to include the universal class symbol. |
class V | ||
Theorem | vjust 2861 | Soundness justification theorem for df-v 2862. (Contributed by Rodolfo Medina, 27-Apr-2010.) |
⊢ {x ∣ x = x} = {y ∣ y = y} | ||
Definition | df-v 2862 | Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.) |
⊢ V = {x ∣ x = x} | ||
Theorem | vex 2863 | All setvar variables are sets (see isset 2864). Theorem 6.8 of [Quine] p. 43. (Contributed by NM, 5-Aug-1993.) |
⊢ x ∈ V | ||
Theorem | isset 2864* |
Two ways to say "A is a
set": A class A is a
member of the
universal class V (see df-v 2862)
if and only if the class A
exists (i.e. there exists some set x equal to class A).
Theorem 6.9 of [Quine] p. 43.
Notational convention: We will use the
notational device "A
∈ V " to mean "A is a set" very
frequently, for example in uniex 4318. Note the when A is not a set,
it is called a proper class. In some theorems, such as uniexg 4317, in
order to shorten certain proofs we use the more general antecedent
A ∈ V
instead of A ∈ V to mean "A is a set."
Note that a constant is implicitly considered distinct from all variables. This is why V is not included in the distinct variable list, even though df-clel 2349 requires that the expression substituted for B not contain x. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 5-Aug-1993.) |
⊢ (A ∈ V ↔ ∃x x = A) | ||
Theorem | issetf 2865 | A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
⊢ ℲxA ⇒ ⊢ (A ∈ V ↔ ∃x x = A) | ||
Theorem | isseti 2866* | A way to say "A is a set" (inference rule). (Contributed by NM, 5-Aug-1993.) |
⊢ A ∈ V ⇒ ⊢ ∃x x = A | ||
Theorem | issetri 2867* | A way to say "A is a set" (inference rule). (Contributed by NM, 5-Aug-1993.) |
⊢ ∃x x = A ⇒ ⊢ A ∈ V | ||
Theorem | elex 2868 | If a class is a member of another class, it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (A ∈ B → A ∈ V) | ||
Theorem | elexi 2869 | If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
⊢ A ∈ B ⇒ ⊢ A ∈ V | ||
Theorem | elisset 2870* | An element of a class exists. (Contributed by NM, 1-May-1995.) |
⊢ (A ∈ V → ∃x x = A) | ||
Theorem | elex22 2871* | If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.) |
⊢ ((A ∈ B ∧ A ∈ C) → ∃x(x ∈ B ∧ x ∈ C)) | ||
Theorem | elex2 2872* | If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
⊢ (A ∈ B → ∃x x ∈ B) | ||
Theorem | ralv 2873 | A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
⊢ (∀x ∈ V φ ↔ ∀xφ) | ||
Theorem | rexv 2874 | An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
⊢ (∃x ∈ V φ ↔ ∃xφ) | ||
Theorem | reuv 2875 | A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.) |
⊢ (∃!x ∈ V φ ↔ ∃!xφ) | ||
Theorem | rmov 2876 | A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
⊢ (∃*x ∈ V φ ↔ ∃*xφ) | ||
Theorem | rabab 2877 | A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ {x ∈ V ∣ φ} = {x ∣ φ} | ||
Theorem | ralcom4 2878* | Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (∀x ∈ A ∀yφ ↔ ∀y∀x ∈ A φ) | ||
Theorem | rexcom4 2879* | Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (∃x ∈ A ∃yφ ↔ ∃y∃x ∈ A φ) | ||
Theorem | rexcom4a 2880* | Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
⊢ (∃x∃y ∈ A (φ ∧ ψ) ↔ ∃y ∈ A (φ ∧ ∃xψ)) | ||
Theorem | rexcom4b 2881* | Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
⊢ B ∈ V ⇒ ⊢ (∃x∃y ∈ A (φ ∧ x = B) ↔ ∃y ∈ A φ) | ||
Theorem | ceqsalt 2882* | Closed theorem version of ceqsalg 2884. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ ↔ ψ)) ∧ A ∈ V) → (∀x(x = A → φ) ↔ ψ)) | ||
Theorem | ceqsralt 2883* | Restricted quantifier version of ceqsalt 2882. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.) |
⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ ↔ ψ)) ∧ A ∈ B) → (∀x ∈ B (x = A → φ) ↔ ψ)) | ||
Theorem | ceqsalg 2884* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ Ⅎxψ & ⊢ (x = A → (φ ↔ ψ)) ⇒ ⊢ (A ∈ V → (∀x(x = A → φ) ↔ ψ)) | ||
Theorem | ceqsal 2885* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) |
⊢ Ⅎxψ & ⊢ A ∈ V & ⊢ (x = A → (φ ↔ ψ)) ⇒ ⊢ (∀x(x = A → φ) ↔ ψ) | ||
Theorem | ceqsalv 2886* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) |
⊢ A ∈ V & ⊢ (x = A → (φ ↔ ψ)) ⇒ ⊢ (∀x(x = A → φ) ↔ ψ) | ||
Theorem | ceqsralv 2887* | Restricted quantifier version of ceqsalv 2886. (Contributed by NM, 21-Jun-2013.) |
⊢ (x = A → (φ ↔ ψ)) ⇒ ⊢ (A ∈ B → (∀x ∈ B (x = A → φ) ↔ ψ)) | ||
Theorem | gencl 2888* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
⊢ (θ ↔ ∃x(χ ∧ A = B)) & ⊢ (A = B → (φ ↔ ψ)) & ⊢ (χ → φ) ⇒ ⊢ (θ → ψ) | ||
Theorem | 2gencl 2889* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
⊢ (C ∈ S ↔ ∃x ∈ R A = C) & ⊢ (D ∈ S ↔ ∃y ∈ R B = D) & ⊢ (A = C → (φ ↔ ψ)) & ⊢ (B = D → (ψ ↔ χ)) & ⊢ ((x ∈ R ∧ y ∈ R) → φ) ⇒ ⊢ ((C ∈ S ∧ D ∈ S) → χ) | ||
Theorem | 3gencl 2890* | Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.) |
⊢ (D ∈ S ↔ ∃x ∈ R A = D) & ⊢ (F ∈ S ↔ ∃y ∈ R B = F) & ⊢ (G ∈ S ↔ ∃z ∈ R C = G) & ⊢ (A = D → (φ ↔ ψ)) & ⊢ (B = F → (ψ ↔ χ)) & ⊢ (C = G → (χ ↔ θ)) & ⊢ ((x ∈ R ∧ y ∈ R ∧ z ∈ R) → φ) ⇒ ⊢ ((D ∈ S ∧ F ∈ S ∧ G ∈ S) → θ) | ||
Theorem | cgsexg 2891* | Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.) |
⊢ (x = A → χ) & ⊢ (χ → (φ ↔ ψ)) ⇒ ⊢ (A ∈ V → (∃x(χ ∧ φ) ↔ ψ)) | ||
Theorem | cgsex2g 2892* | Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.) |
⊢ ((x = A ∧ y = B) → χ) & ⊢ (χ → (φ ↔ ψ)) ⇒ ⊢ ((A ∈ V ∧ B ∈ W) → (∃x∃y(χ ∧ φ) ↔ ψ)) | ||
Theorem | cgsex4g 2893* | An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.) |
⊢ (((x = A ∧ y = B) ∧ (z = C ∧ w = D)) → χ) & ⊢ (χ → (φ ↔ ψ)) ⇒ ⊢ (((A ∈ R ∧ B ∈ S) ∧ (C ∈ R ∧ D ∈ S)) → (∃x∃y∃z∃w(χ ∧ φ) ↔ ψ)) | ||
Theorem | ceqsex 2894* | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) |
⊢ Ⅎxψ & ⊢ A ∈ V & ⊢ (x = A → (φ ↔ ψ)) ⇒ ⊢ (∃x(x = A ∧ φ) ↔ ψ) | ||
Theorem | ceqsexv 2895* | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) |
⊢ A ∈ V & ⊢ (x = A → (φ ↔ ψ)) ⇒ ⊢ (∃x(x = A ∧ φ) ↔ ψ) | ||
Theorem | ceqsex2 2896* | Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
⊢ Ⅎxψ & ⊢ Ⅎyχ & ⊢ A ∈ V & ⊢ B ∈ V & ⊢ (x = A → (φ ↔ ψ)) & ⊢ (y = B → (ψ ↔ χ)) ⇒ ⊢ (∃x∃y(x = A ∧ y = B ∧ φ) ↔ χ) | ||
Theorem | ceqsex2v 2897* | Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
⊢ A ∈ V & ⊢ B ∈ V & ⊢ (x = A → (φ ↔ ψ)) & ⊢ (y = B → (ψ ↔ χ)) ⇒ ⊢ (∃x∃y(x = A ∧ y = B ∧ φ) ↔ χ) | ||
Theorem | ceqsex3v 2898* | Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011.) |
⊢ A ∈ V & ⊢ B ∈ V & ⊢ C ∈ V & ⊢ (x = A → (φ ↔ ψ)) & ⊢ (y = B → (ψ ↔ χ)) & ⊢ (z = C → (χ ↔ θ)) ⇒ ⊢ (∃x∃y∃z((x = A ∧ y = B ∧ z = C) ∧ φ) ↔ θ) | ||
Theorem | ceqsex4v 2899* | Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
⊢ A ∈ V & ⊢ B ∈ V & ⊢ C ∈ V & ⊢ D ∈ V & ⊢ (x = A → (φ ↔ ψ)) & ⊢ (y = B → (ψ ↔ χ)) & ⊢ (z = C → (χ ↔ θ)) & ⊢ (w = D → (θ ↔ τ)) ⇒ ⊢ (∃x∃y∃z∃w((x = A ∧ y = B) ∧ (z = C ∧ w = D) ∧ φ) ↔ τ) | ||
Theorem | ceqsex6v 2900* | Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.) |
⊢ A ∈ V & ⊢ B ∈ V & ⊢ C ∈ V & ⊢ D ∈ V & ⊢ E ∈ V & ⊢ F ∈ V & ⊢ (x = A → (φ ↔ ψ)) & ⊢ (y = B → (ψ ↔ χ)) & ⊢ (z = C → (χ ↔ θ)) & ⊢ (w = D → (θ ↔ τ)) & ⊢ (v = E → (τ ↔ η)) & ⊢ (u = F → (η ↔ ζ)) ⇒ ⊢ (∃x∃y∃z∃w∃v∃u((x = A ∧ y = B ∧ z = C) ∧ (w = D ∧ v = E ∧ u = F) ∧ φ) ↔ ζ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |