New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imbi12i | GIF version |
Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12i.1 | ⊢ (φ ↔ ψ) |
imbi12i.2 | ⊢ (χ ↔ θ) |
Ref | Expression |
---|---|
imbi12i | ⊢ ((φ → χ) ↔ (ψ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12i.2 | . . 3 ⊢ (χ ↔ θ) | |
2 | 1 | imbi2i 303 | . 2 ⊢ ((φ → χ) ↔ (φ → θ)) |
3 | imbi12i.1 | . . 3 ⊢ (φ ↔ ψ) | |
4 | 3 | imbi1i 315 | . 2 ⊢ ((φ → θ) ↔ (ψ → θ)) |
5 | 2, 4 | bitri 240 | 1 ⊢ ((φ → χ) ↔ (ψ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: orimdi 820 rb-bijust 1514 nfbii 1569 sb8mo 2223 cbvmo 2241 raleqbii 2645 rmo5 2828 cbvrmo 2835 ss2ab 3335 sscon34 3662 evenodddisjlem1 4516 tfinnn 4535 cotr 5027 cnvsym 5028 intasym 5029 intirr 5030 dffun2 5120 funcnvuni 5162 fvfullfunlem1 5862 clos1induct 5881 |
Copyright terms: Public domain | W3C validator |