NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-reu GIF version

Definition df-reu 2622
Description: Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
df-reu (∃!x A φ∃!x(x A φ))

Detailed syntax breakdown of Definition df-reu
StepHypRef Expression
1 wph . . 3 wff φ
2 vx . . 3 setvar x
3 cA . . 3 class A
41, 2, 3wreu 2617 . 2 wff ∃!x A φ
52cv 1641 . . . . 5 class x
65, 3wcel 1710 . . . 4 wff x A
76, 1wa 358 . . 3 wff (x A φ)
87, 2weu 2204 . 2 wff ∃!x(x A φ)
94, 8wb 176 1 wff (∃!x A φ∃!x(x A φ))
Colors of variables: wff setvar class
This definition is referenced by:  nfreu1  2782  nfreud  2784  reubida  2794  reubiia  2797  reueq1f  2806  reu5  2825  rmo5  2828  cbvreu  2834  reuv  2875  reu2  3025  reu6  3026  reu3  3027  2reuswap  3039  2reu5lem1  3042  cbvreucsf  3201  reuss2  3536  reuun2  3539  reupick  3540  reupick3  3541  reusn  3794  rabsneu  3796  reiotacl2  4364  reiota2  4369  funcnv3  5158  feu  5243  dff4  5422  fsn  5433
  Copyright terms: Public domain W3C validator