| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > simp12 | GIF version | ||
| Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp12 | ⊢ (((φ ∧ ψ ∧ χ) ∧ θ ∧ τ) → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 956 | . 2 ⊢ ((φ ∧ ψ ∧ χ) → ψ) | |
| 2 | 1 | 3ad2ant1 976 | 1 ⊢ (((φ ∧ ψ ∧ χ) ∧ θ ∧ τ) → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: simpl12 1031 simpr12 1040 simp112 1085 simp212 1094 simp312 1103 |
| Copyright terms: Public domain | W3C validator |