New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3ad2ant1 | GIF version |
Description: Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
3ad2ant.1 | ⊢ (φ → χ) |
Ref | Expression |
---|---|
3ad2ant1 | ⊢ ((φ ∧ ψ ∧ θ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2ant.1 | . . 3 ⊢ (φ → χ) | |
2 | 1 | adantr 451 | . 2 ⊢ ((φ ∧ θ) → χ) |
3 | 2 | 3adant2 974 | 1 ⊢ ((φ ∧ ψ ∧ θ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: simp1l 979 simp1r 980 simp11 985 simp12 986 simp13 987 simp1ll 1018 simp1lr 1019 simp1rl 1020 simp1rr 1021 simp1l1 1048 simp1l2 1049 simp1l3 1050 simp1r1 1051 simp1r2 1052 simp1r3 1053 simp11l 1066 simp11r 1067 simp12l 1068 simp12r 1069 simp13l 1070 simp13r 1071 simp111 1084 simp112 1085 simp113 1086 simp121 1087 simp122 1088 simp123 1089 simp131 1090 simp132 1091 simp133 1092 3anim123i 1137 3jaao 1249 ceqsalt 2882 sbciegft 3077 reupick2 3542 otkelins2kg 4254 otkelins3kg 4255 nnsucelrlem3 4427 ssfin 4471 ncfinlower 4484 tfin11 4494 nnpweq 4524 sfinltfin 4536 vfintle 4547 vfinncvntnn 4549 peano4 4558 funprg 5150 funprgOLD 5151 fvun1 5380 fvopab4t 5386 po0 5940 nenpw1pwlem2 6086 ceclnn1 6190 nclenc 6223 lenc 6224 taddc 6230 letc 6232 nclenn 6250 addcdi 6251 spaccl 6287 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |